
ON THE COMPOSITION OF ALGEBRAIC FORMS 
OF HIGHER DEGREE 

C. C. M A C D U F F E E 

1. Introduction. No discussion of composition can properly be in­
troduced except by mentioning the complex numbers. From the 
relation 

%i + ix2 = (yi + iy2)(zi + iz2), 

xi = yizx — y2z2y x2 = yiz2 + y2zu 

we have, upon taking norms, 
2 2 2 2 2 2 

xi + x2 = (yi + y2)(zi + z2). 
Thus the quadratic form 3>?+3>2 is composed with itself. 

Similarly by using quaternions we achieve the composition of a 
sum of four squares with itself,1 and by using Cayley's algebra of 
order 8, we obtain the composition of a sum of eight squares with 
itself. No further progress in this direction is possible.2 

In general let us assume that 

(1) Xk = Z) cijkyiZj (i, j , k = 1, 2, • • • , n) 

where the Ci& are numbers of a commutative ring 81 with unit ele­
ment, and the y's and s's are indeterminates. If there exist three 
homogeneous forms/, g, h of degree k with coefficients in 9Î such that 

(2) ƒ ( * ) - * (? ) • * (« ) 

is an identity by virtue of the bilinear transformation (1), we say 
that g and h are cotnposable, that ƒ is composite, and that the transfor­
mation (1) is admissible. 

The theory of composition appears in the mathematical literature 
under two rather distinct special cases, first where 9Î is a field, and 
second where 9Î is the ring of rational integers. The field case is the 
simpler and progress has been carried much further, but this is not 
the case in which we are here primarily interested. 

An address presented at the invitation of the Program Committee at the meeting 
of the Society in Wellesley, August 13, 1944; received by the editors December 18, 
1944. 

1 It seems certain that a knowledge of the fact that a sum of four squares is com-
posable with itself, which had been proved by Euler in 1748, was one of the main 
clues which led Hamilton to the discovery of quaternions. 

2 See L. E. Dickson, Ann. of Math. (2) vol. 20 (1919) pp. 155-171. 
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The case where 9Î is the. ring of rational integers is intimately con­
nected with some of the basic concepts of number theory, particularly 
with the class number in an algebraic field, and in spite of the large 
number of special results which have been obtained, composition 
theory here still appears to be in a primitive condition. 

Fortunately it is not necessary to at tempt a summary of the litera­
ture, for it is exhaustively given in Dickson's History of the theory of 
numbers? 

The aim of the present paper is very modest. While the problem of 
composition may be stated for an abstract ring, it seems as if only 
in the case of a principal ideal ring are there enough properties a t 
hand to make the problem amenable to our methods. The compre­
hensive Dedekind-Weber composition, involving ideal classes in 
algebraic fields of degree n, is approached with the calculus of matrices 
with the result tha t certain aspects of the theory are thrown into 
higher relief. Finally the theory of ideals in more general algebras is 
shown to yield compositions, sometimes of a somewhat unorthodox 
type. But the existence of these compositions is sufficient to show 
that the complete determination of all compositions over a ring is 
likely to prove to be a complicated problem. 

2. The Dedekind-Weber theorem. Let gf be an ordinary algebraic 
field of order n over the rational field 9t, and let [%] be its maximal 
integral ring, with [91]-basis 

€ l , €2 , • • • , € w . 

We shall call 

t(y) = yl€l + y2€2 + . . . + yn^ 

where the y's are indeterminates, the general number of [{$]. By means 
of the multiplication table 

k 

of [§] , it is possible to write 

(3) t(x) = t(y)-t(z) 

where 

Xk = 22 CiJkyiZj* 
i,3 

3 L. E. Dickson, History of the theory of numbers, vol. 3, Washington, 192,3, 
chaps. 3 and 14. 
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The norm n(x) of t(x) is an algebraic form of degree n in n indeter-
minates with coefficients in [JR], and from (3) it follows that 

n{%) = n(y)-n{z). 

Thus the norm form n{y) is composable with itself, and is the most 
obvious example of composition which we have. 

This process is readily extensible to linear algebras which have the 
norm property, whether they are associative or not, and leads to the 
composition of forms in n indeterminates with themselves. If the alge­
bra is associative but not commutative, these forms are of degree 
less than n. 

But not all composition is of a form with itself, and the most 
general result in this direction is due to Dedekind and Weber.4 

Let a and b be two ideals of [%] with respective [9î]-bases 

«i, «2, • * • , an, 0i, £2, * • * , 0n 

and let the product ideal c = ctb have the basis 71, 72, • • • , yn- Then 
rational integers djk exist such that 

k 
Define 

*(<*) - yi«X + y2<X2 + ' • • + ynOiny t(V) = *i0i + Z2&2 + • ' " + ZnPn 

where the y's and z's are indeterminates. Then 

*(a)-*(b)-<(c) 

where 

/(C) = *i7i + X2j2 + ' • • + #n7n, %k = ] £ Cii*y&i' 

Let «/(a) denote the norm of the number /(a) in [%]. I t can be shown 
that 

nt(a) = fi(a)-g(y) 

where n(a) is the norm of the ideal a and g(y) is an w-ary n-ic form 
with coefficients in [8î]. Similarly 

»/(b) = »(b) •*(*), nt(c) = «(c) •ƒ(*). 

Since wJ(c) = w£(a) •«£(&), it follows that 

ƒ(*) = s(y) •*(*)> ** = ]C^y*y<»/-

4 H. Weber, Lehrbuch der Algebra, 2d éd., Braunschweig, 1908, p. 335. 
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We are thus led to the composition of the forms g(y) and h(z), which 
are in general different. 

I t is shown, further, that if a and a' are ideals of the same class, 
the corresponding forms g(y) and g'(y) are equivalent, and that a 
change of basis of a leads to an equivalent g(y). But if a and a' belong 
to different classes, g(y) and g'(y) are not equivalent. Thus as many 
non-equivalent forms are obtained in this way as there are classes of 
ideals in [§ ] . 

3. The general problem. In the type of composition which is ac­
complished through ideal multiplication in an algebraic field, the 
admissible bilinear transformations (1) satisfy two conditions6 which 
are sometimes but not always demanded in composition theory— 
first tha t the xi, x2, • • • , xn shall be linearly independent when the 
y's and z's are independent indeterminates, and second that there 
shall exist elements a* # in the principal ideal ring 9t such that 

(4) y{Zj « ] £ aiikXk. 

We might say that the composition is non-trivial if these conditions 
are satisfied. We shall show that one simple hypothesis will insure 
both of these conditions. 

Let us stream-line the notation by introducing the vectors 

r xi 

%2 

L. Xn —. 

y -

yi " 

72 

- y n _ 

z = 

Zl "1 
*2 

L *n J 

and the matrices 

R(y) - yxRx + y2R2 + • • • + ynRn, 

S(z) - ZiSi +Z2S2 + • • • + zJSn 
where 

R% = (Cisr), Si = (Cris)' 

In this notation the bilinear transformation (1) can be written 

(5) x « R(y)-z = ST(*)-y. 

The hypothesis which we shall introduce is that the matrices Si, 52, 
• • • , Sn are relatively prime on the right. 

Weber, loc. cit. 
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From this hypothesis it follows6 that n matrices At with elements 
in 9Î exist such that 

AlSl + A*S2 + • • • + AnSn « / , A4 - (a.*). 

Tha t is, 

i,i 

where ôr« is Kronecker's delta. Now a relation ^bkXk = 0 would imply 

] £ bkCijhyiZj = 0 

and, since the y s and z'& are independent indeterminates, 

]C &*<*/* =• 0 (*\ i =» 1, 2, • • • , «). 
A; 

Then 
X) aHrbkC%jk = 2-/ *̂5rJb = Jr = 0 

* , ƒ , & A; 

for every r, so that Xit %2f * * * t #n are linearly independent. 
We may now verify that equations (4) with the a»/* as defined 

above actually constitute a solution of (1). For upon substituting we 
have 

Z^ CijkCt>iji%i = 2LJ àki%i = Xk. 

Thus our hypothesis is sufficient that (1) be non-trivial. 
That it is necessary is quite evident, for if (4) exists, 

Xk = z2 dihzl UiilXh 
i.i l 

and if the x's are linearly independent, 

2^t Cijkdiji = ôki, 
*•/ 

which in matric form is 

A1Sl + A2S2 + • • • +AnSn~ I. 

An equivalent condition is that the matrices Ru R2, • • • , Rn be 
relatively prime on the left. 

An implication of this condition is that we may assume ƒ, g and h 
to be primitive. For if 

ƒ(*) = a-f(x), g(y) =b-g'(y), h(z) - c• h'(z) 

6 Bull. Amer. Math. Soc. vol. 39 (1933) p. 573. 
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where a, b and c are the contents and ƒ', g' and hf primitive, then by 

a) 
ƒ'(*) = p(y, z) 

where p has coefficients in 9Î. Since 
a-p(y, z) « bcg'(y)'h'{z), 

it follows that a\ be. By (4) 

f(y)-h'(*)-q(x) 

has coefficients in 9$ so that 

Jc-gO) = a-f'(x), 

whence be | a. Then be = ua where w is a unit of $R, and 

«•/ '(*)-«'(y)-A'(s). 

A linear homogeneous transformation on the variables of a form ƒ 
may be written 

(6) x = Ax', U | ^ 0 , 

where A is a matrix with elements in JR. If | A | is a unit of JR, then 

#' = A-Xx 

is again a transformation of the same type. If by virtue of (6) 

ƒ(#) = ƒ'(#')» -̂  unimodular, 

then the form ƒ'(x) is called equivalent tof(x). Clearly the totality of 
numbers of 91 which ƒ and ƒ' represent is the same. 

If Mi9 M2l • • • , Mn are wXw matrices with elements in 9t, then 

| XiMl + X2M2 + • • • + XnMn | 

is a homogeneous form of degree n in the n indeterminates 
A form which can be written as the determinant of 

such a matrix will be called amenable. 
Let us consider the effect of a transformation of the variables on 

the bilinear transformation (1). If y=Ay', then from (5) 

x = S*(z)-Ay', 
so that 

(7) S'(z) - ATS®. 

Similarly if we take z — Bz', we have 

(8) R'(y)-R{y).B. 
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The following theorem was obtained by Gauss7 for quadratic forms 
and generalized by Dedekind. 

If f(x)~g(y)'h(z) by virtue of (1), every irreducible factor of h(z) 
(or of g(y)) of degree greater than 0 is a factor of | ST(z) | (or of \ R(y) | ). 
If h(z) (or g(y)) is irreducible of degree n, then it is amenable. 

From (5) we have 

5T(£l) • y « x. 

Upon multiplying through by adj ST(z), we have 

\ST(z)\ -y « adj5T(z)-x. 

Since g(y) is homogeneous of degree k, 

\Sr(z)\*-g(y) = P(z,x) 

where P(z, x) is a homogeneous polynomial in x and z with coefficients 
in 9Î. Upon multiplying by h(z) and making use of (2), we have 

| ^ ( * ) | * - / ( * ) -P (« , *)•*(«). 

If 9t is a ring in which factorization into primes is unique, the same 
is true in the polynomial ring dt[x, z]. Then 

h(z)\\ST(z)\\ 

and the distinct irreducible factors of h(z) occur among the distinct 
irreducible factors of |5T(;s)|. If in particular h(z) is irreducible of 
degree n, 

h(z) - c-|srr(s)|, c £ 9 t . 
Thus h(z) is amenable. Similarly we find that, if g(y) is irreducible of 
degree n, 

«(y) -* . |u (y) | , *e$R. 
Another basic theorem in the theory of composition is the Theorem 

of Dickson.8 

Letf(x) ~g(y) - h(z) by virtue of (1). If \ ST(z) | is not identically zero, 
g(y) is equivalent to c-f(x) in the quotient field of 9$. If |i?(;y)| is not 
identically zero, h(z) is equivalent to c-f(x) in the quotient field of dl. 
If furthermore h(z) represents a unit u of dt and is irreducible of degree 
n in n variables, g(y) is equivalent to u-f(x) in 9t. Similarly if g(y) 

7 See, for instance, the exposition of A. Speiser, Festschrift Heinrich Weber, 
Teubner, Leipzig, 1912, pp. 375-395. 

8 L. E. Dickson, C. R. Acad. Sci. Paris vol. 172 (1921) pp. 636-640. 
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represents a unit u of 9Î and is irreducible of degree n in n variables, 
h(z) is equivalent to u-f(x) in 9Î. 

Let ki, k2, • • • , kn be n numbers of 9t such that |ST(&)| 5^0. In 
the relations 

*-ST(*)-y. ƒ(*) - «(y)-*(«) 

set z—>k. Then 

y = S-r(k).x, f(x)~g(y)-h(k). 

The first equation represents a transformation of the type y— Ay9 

where y''=#, so that the second equation becomes 

ƒ( / ) = Kk)-g(y) = c-g(y). 

If h(z) represents a unit of 9î, let &i, fe, • • • , kn be so chosen that 
h(k) = #. Then f(x) —u -g(y). If h(z) is irreducible of degree n, we have 
seen that h(z) = c- \ST(z) \ so that \ST(k)\ is a unit of 9Î and the 
transformation ^ = 5~T(^)-^ is unimodular. 

4. The theory of ideals. The writer has approached the theory of 
ideals in linear associative algebras over a principal ideal ring through 
the matric calculus.9 This leads to a theory of composition which ex­
tends the known theory. 

First, when applied in algebraic fields it enriches the Dedekind-
Weber theory by bringing to light the matrices whose determinants 
were the essential items in the older theory. The algebraic form is 
defined in terms of the basis of the ideal class rather than in terms of 
the single ideal, which comes more directly to the essential point of 
composition of classes. 

Second, in the general case where the class group does not exist, 
some quite unorthodox examples of composition are obtained. 

We assume that % is the quotient field of the principal ideal ring 9Î, 
and that SI is a finite algebra over % with the g-basis €i, €2, • • • , en, 
and the constants of multiplication £»# which belong to 9î. These n* 
numbers can be arranged into sets of n matrices by defining 

where r denotes the row and s the column in which an element lies. 
The numbers 

a = (Zi€i + #2*2 + • # • + 0n€n 

9 Monajtshefte für Mathematik und Physik vol. 48 (1939) pp. 293-313. Amer. J. 
Math. vol. 64 (1942) pp. 646-652. 
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of SI whose coordinates at- lie in SR constitute an integral domain of SI 
which we shall denote by [31]. Corresponding to each number a there 
are three matrices 

Q(0t) « dxQi + 02Ö2 + • • • + OnQn, 

R(a) = aiRx + a2R2 + • • • + anRn} 

S(a) = axSi + a^Si + . . . + aJSn, 

all of whose elements belong to JR. 
We shall assume that 31 is a Frobenius algebra, that is, that there 

is in 31 at least one number a such that Q(ot) is nonsingular. In this 
case each of the correspondences 

a <=± R(a), ot ^ S (a) 

is an isomorphism, the so-called first and second regular representa­
tions of [31]. 

An additive group 93? of numbers of [31] which is closed under 
multiplication by the numbers of dt is called an dt-module. An 
SR-module which is closed under multiplication on the left by the 
numbers of [31] is a left ideal. A right ideal is similarly defined. 

Every left or right ideal a of [31] has an SR-basis ai, a2t • • • , an 

where 
«i = a<i€i + ai2€2 + • • • + atn€n, dij- G 9î. 

We define the matrix A ==(are), and say that A corresponds to the 
ideal a by a Poincarê correspondence. If A is nonsingular, it is unique 
up to a left factor [/which is a unimodular matrix with elements in 9Î. 
The matrix S(a) corresponds to the principal left ideal (a], and 
RT(a) corresponds to the principal right ideal [a). 

Let a be a left ideal with [3l]-basis au af2, • • • , cen, and let A be the 
greatest common right divisor of the matrices 

5(«i), S(a2)y • • • , S(ak), 

which is unique up to a unimodular left factor U. Then A corresponds 
to a by the Poincaré correspondence, and the rows of A determine an 
9?-basis of a. 

A necessary and sufficient condition in order that a matrix A with 
elements in SR shall correspond to a left ideal is that there shall exist 
n matrices D,- with elements in SR such that 

ARÏ = Ih A (i = 1, 2, • • • , n). 

Two ideals a and b are said to be equivalent, or to belong to the 
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same class, provided two numbers T\ and r2 of [31] exist such that 

CtTi = 6T2. 

At least in the case where % is the rational field, 9Î the ring of rational 
integers, and 3t is semi-simple, the number of classes of left (or right) 
ideals is finite.10 

Let a and b be two left ideals with 3î-bases ai, a2, • • • , an and 
ft, &, • • • , j8n, and let a&A so that matrices Hi exist such that 
S(ai) —HiA. If and only if b is equivalent to a, there exists a matrix B 
corresponding to b such that 

Sfa) - BiB (i - 1, 2, • • • , n). 

Then also 

ARÏ « ZM:, £i£ « DIB. 

If 31 is a Frobenius algebra, every ideal class has a basis of order n 
in the following sense. There exist n matrices B\, B2, • • • , Bn such 
that every matrix 

biBt + b2B2 + • • • + bnBn, bi E % 

corresponds to an ideal of the class, and conversely every ideal of the 
class corresponds (not uniquely) to a matrix of this linear system. 

It is not usually true if a*=*A and b<=±B that aXb^AB. But if 
[31] is of class number hf the Poincaré correspondence can be amplified 
so that to every ideal a there correspond h matrices A1, A2, • • • , Ah, 
one for each class, with the following property. If b is in class 6, and 
if aXb = c, and if c^C by the Poincaré correspondence, then 

AhB - C. 

Thus every ideal a has, besides its principal norm 

n(a) - PU 

where the double bars indicate the absolute value of the determinant, 
h other norms 

»'(*) « WMl 
If b is in class b and aXb = c, then 

nb(a)'ti(b) = »(c). 

5. The algebraic field. Let us now restrict $ to be the rational 

ï 0 M. Deuring, Algebren, Ergebnisse der Ma thema tik und ihrer Grenzgebiete, 
vol. 4, no. 1, Springer, Berlin, 1935, p. 90. 



208 C. C. MACDUFFEE [March 

field, 9Î to be the ring of rational integers, and [21] to be the maximal 
integral domain of a (commutative) algebraic field of order n over §. 
We can connect our results with the Dedekind-Weber theorem. 

It is now true that every ideal is two-sided and the norm of the 
product of two ideals is equal to the product of their norms. Con­
sequently all the norms of an ideal a are equal, 

n(a) = n'(a) = n2(a) = . • • = nh(fl). 

Select two ideal classes, the ath and the ftth, whose product class 
is the cth class. Select bases 

Ait Aiy • • • , An; Bit B2, • • • » Bn; Ci, C2, • • • , Cn 

for these three classes, and define the w-ary w-ic forms 

g(y) = I yiAi + y*A* + • • • + y»An |, 
*(*) « I ZiBx + z2B2 + • - • + znBn I 

where the y's and z's are indeterminates. The matrix At corresponds 
to an ideal a» by the Poincaré correspondence, and at- corresponds to 
A^ under the extended correspondence. It can, moreover, be shown 
that 

g(y) ~ I yiAi + 3^2 + • • • + ynAn |. 

Since each product Ab
{Bj corresponds to an ideal in the cth class, there 

exist rational integers c*# such that 

AiBj = 2 J CijkCk. 

Thus 

g(y) ' Kz) = 

where 

2^ yiZjAiBj X **£* ^f(x) 

%k = Z ^ Cijky%Z]'. 

Thus we have the composition of w-ary w-ic forms in a manner which 
is directly related to the composition of ideal classes. 

This may be clearer to the reader if an example is given. In the 
quadratic field $((*-* 31)1/2), the maximal integral domain has the 
basis 

€1 = 1 , c, = (1 + ( - 3iyi*)/2. 

The class number is 3, and each of the ideals11 (1), (2, 2~1(1 + (-31)1'*) 
11 L. W. Reid, The elements of the theory of algebraic numbers, Macmillan, 1910, 

p. 444. 
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(4, (l + ( — 31)1/2)/2) is in a different class, which we shall denote as 
the first, second and third classes, respectively. The matrices 

5--[Ô "]• * - [_! ! ] 
form a basis for the first or principal class, while 

*-[:ia- '"G3 
form a basis for the second class, and 

for the third class. Let 
1 1 2 2 

f{%) = I X\S\ + X2S2 I a Xx+ X\X2 + 8^2» 
g(y) = I yiAi + y2A2\ « 4yx - yiy* + 2y2, 

1 1 2 2 

A(*0 == I Z1&1 + Z2B2 I = 2Zi ~ Zi22 + 4Z2. 

These represent the three positive reduced forms of discriminant 
- 3 1 . 1 2 Now 

3 r - i °1 i r o n 
A"[ o-J "-Ui l 

and 
\ yiAi + y*A*\ ** g(y). 

We have 
(yiAt + y2A2)(ziB! + z2B2) = xiSi + xzS2 

where 
xi = yi«i — 4^i22 - 2y2zu 

x2 = — yi*i + y2Z2. 

6. A noncommutative ring. A simple instance of an integral domain 
of a noncommutative algebra of class number greater than 1 was 
given by E. J, Finan.18 The complete matric algebra of order 4 over 
the rational field has a non-maximal integral domain with basis 

12 L. E. Dickson, Introduction to the theory of numbers, University of Chicago Press, 
1929, p. 140. 

13 Duke Math. J. vol. 1 (1935) pp. 484-490. 
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ri on ro n ro on ro on 
Lo ij' Lo oj' Lo ij* La oj' 

The class number of this domain is 3, and the three left ideal classes 
may be represented by the matrices 

r a 6 0 0"] T3a 6 0 0~| Fa b 0 0~| 

3J c 0 0 3d c 0 0 d c O O 

O O c d M 0 0 c <H 0 0 3c d 

LO 0 36 aj LO 0 J a J L o 0 3b a J 

where A represents the principal class. 
Denote by cti the ideal whose basis is A with a = l, 6 = c = d = 0;by 

Ü2 the ideal whose basis is A with a = 0, 6 = 1, c = d = 0, and so on. 
These basic ideals are singular, and in fact cti = Ci, «2 = C2, da =* 63, «4 = 64. 
A nonsingular ideal can belong to but one class. 

1 

Al\ 
A2\ 
i l l 
A,1 

Bx 
B2 
B8 
BA 

ft 
ft 
ft 
ft 

Ax 

ft 
3ft 
Bx 
Bx 

Bx 
Bx 
Bx 
Bx 

ft 
3ft 
3ft 

ft 

A* 

ft 
3ft 
3B2 
3B2 

3B2 

3B% 
3B2 
3B2 

ft 
3ft 
3ft 

ft 

-43 

ft 
ft 
B8 

3B8 

353 

B8 
B8 

3B8 

ft 
ft 
ft 
ft 

AA 

3ft 
3ft ! 
B4 

3B4 

3B4 
B4 
B< 

3Bi 

3ft 
3ft 
3ft 
3ft 

Bx 

3ft 
3ft 
Bx 

3Bx 

3Bx 
Bx 
Bx 

3Bx 

3ft 
3ft 

1 3ft 
3ft 

£2 

ft 
ft 
B2 

3B2 

3B2 

B2 
B2 

3B2 

ft 
ft 
ft 
ft 

£8 

ft 
ft 
B8 

3B8 

3B8 

B8 
B8 

3B8 

ft 
ft 
ft 
ft 

B4 

3ft 
3ft 

£4 
3B4 

3B* 
B4 
B4 

3B4 

3ft 
3ft 
3ft 
3ft 

ft 

ft 
3ft 
Bx 
J5x 

Bx 
Bx 

I Bl 

Bx 

ft 
3ft 
3ft 

ft 

ft 

ft 
3ft 
3B2 
3B2 

3B2 

3B2 
3B2 
3B2 

ft 
3ft 
3ft 

ft 

ft 

ft 
3ft 
3B8 
3B8 

3B8 

3B8 
3B8 
3B8 

ft 
3ft 
3ft 

ft 

ft 

ft 
3ft 
B4 
B4 

B4 

B4 
B4 
B4 

ft 
3ft 
3ft 

ft 

From the accompanying multiplication table it may be noted that 
multiplication is associative14 but that the class group fails to exist. 

The examples of composition furnished by this ring are in a sense 
trivial, but they serve to show that the qualifying conditions attached 
to our earlier theorems are essential, and that the problem of de­
termining all forms which admit composition in a ring is a compli­
cated one. 

By composing the third ideal class with the first, we obtain 
14 This follows from the definition of the product of two modules. Monatshefte für 

Mathematik und Physik, loc. cit. p. 304. 
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3(3>i+ y2+ y*+ yù2(yi+3y*+ 3;y3+ yAY{z\Zz — 3z224)
2 » 3(^i^3 — X2XÙ*. 

That each side would be a perfect square was predictable, since the 
algebra is of rank 2. This composition is essentially 

*i*3 - #2*4 = (yi + y* + yz + yàiyi + 3^2 + 3^3 + yOOws - 3z224). 

Let us see if this composition is in accord with the Theorem of 
Gauss. Here |»ST(2)| vanishes identically and 

I &(y) I = 3(^i + 3^2 + 3y3 + y*)2(yi + y* + yz + y*)2 

so that g(y) divides | i?(y) | , while h(z) divides |ST0s)| trivially. 
The example is also of interest in connection with the Theorem of 

Dickson. Clearly g(y) is not equivalent to f(x), and since |5T (z) | 
vanishes identically, it is not expected to be. Since | R(y) | does not 
represent ± 1 , h(z) is not equivalent to ƒ (re) in the ring of rational 
integers, but is equivalent to f(x) in the field of rational numbers. 
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