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1. Introduction. For each p ^ 1, let Lp be the Lebesgue space whose 
elements are real or complex valued measurable functions ƒ(x), de
fined over — oo < # < oo, for which the integral 

(l.i) r\j{x)\ux 
^ - 0 0 

is finite. The distance ||/2 — / i | | between two elements f± and ƒ2 of the 
space is defined by 

/ /»oo \ lip 

(1.2) || /2 - A|| = J J I ƒ,(*) - Mx) \"dxj . 

For each p^ 1, Lp is a linear metric complete separable space. 
Let E be a set in Lp. The linear manifold M(E) determined by E 

is the set of all linear combinations (finite) of elements of £ . The 
span SP(E) of E in Lp is the closure in Lp of M (E) ; an element cj> of 
Lp belongs to SP(E) if and only if to each e > 0 corresponds an element 
f€ of M(E) such that | | 0 - /« | | <e . 

L e t / G L p . For each real A, the translation f (x+h) of f(x) is also in 
Lp. Let 7/ denote the set of translations of/. Wiener [2, pp. 7-9]x 

showed that i f /GL 2 , then ^ ( T / ) is the whole space L2 if and only if 
the real zeros of the Fourier transform of ƒ form a set of measure 0. 
He [2, pp. 9-19] showed also (and this was much more difficult) that 
if / G i i i then Si(T/) is the whole space L\ if and only if the Fourier 
transform of ƒ has no real zeros. He [2, p. 93] raised the question 
whether similar propositions hold for other values of p and expressed 
a "suspicion" that they do, at least when 1^PS2. 

In view of the similar suspicions held by Wiener and others, a re
sult recently announced by Segal [l ] is surprising. Segal has shown 
that if Kp < 2 , then there is an element/of Lp such that (i) the zeros 
of the Fourier transform of ƒ form a set of measure 0 and (ii) the span 
Sp(Tf) of the translations of ƒ does not include the whole space Lp. 

This development will doubtless create interest in the search for 
criteria for Sp(Tf) = Lp. With the hope that both the result and the 
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special direct proof may throw light on the problem, the author pre
sents the following result which he obtained ten years ago and has 
not previously announced. 

THEOREM 1.3. If p>l and F is a simple step function, then 
SP(TF) = LP. 

2. Simple step functions. A simple step function is a function F(x) 
which has a nonzero constant value over a finite interval a ^x <a+2b 
and is zero elsewhere. The positive constant 26 is the width of the step 
function. With each simple step function F of width 26, we may as
sociate the normal step function G defined by 

f 1, - 6 < x < 6, 
(2.1) G(x) = \ 

10, elsewhere. 
Clearly, M(TF) = M(T0) and SP(TP) = SP(T0). 

The Fourier transform g(u) of the function G{x) in (2.1) is 

J * °° sin bu 
G(x)eiu*dx - (2/V)1/2 , u * 0, 

- 0 0 U 

and g(0) = (2/7r)1/26. This transform is bounded, continuous, and in Lp 

for each p>\. Since g(u) has real zeros, the second theorem of Wiener 
cited above implies that SI(TG) is not the whole space Li. Since the 
set of zeros has measure 0, Wiener's first theorem implies that 
S2(TG)=L2. Hence, when p = 2, the conclusion of Theorem 1.3 fol
lows from Wiener's theory. 

3. Two lemmas. We shall use the two following lemmas. 

LEMMA 3.1. Let p^l and let f be an element of Lp. If SP(T/) contains 
g, then Sp(Tf) contains SP(T0). 

This is a consequence of the fact that linear combinations of trans
lations of linear combinations of translations of ƒ are linear combina
tions of translations of ƒ. 

LEMMA 3.2. Let p^l and let F be an element of Lp. If SP{TF) con
tains, for each h>0, a simple step function of width h> then SP(TF)=LP. 

Let <i> be an element of Lp. Let e > 0. A fundamental theorem on ap
proximation gives a step function g(x), a linear combination of simple 
step functions, such that ||#— g\\ <€. Since g is a linear combination 
of elements of Sp{Ti), g itself is an element of SP(TF)- This establishes 
Lemma 3.2. 
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4. Proof of Theorem 1.3. Using Lemma 3.2, we see that Theorem 
1.3 is a consequence of the following lemma. 

LEMMA 4.1. Let p>l. If F is a simple step function, then SP(TF) 
contains, for each h>0, a simple step function of width h. 

Let c, a, and hi be the constants such that F(x) = c when a^x <a+hi 
and F(x) = 0 otherwise. Let h > 0, and let g(x) be the simple step func
tion for which g(x) = 1 when 0 ^x<h and g(x) = 0 otherwise. Let e>0. 
We shall prove Lemma 4.1 by giving an explicit formula for a linear 
combination ge(x) of translations of F(x) such that ||g — g€||<e. 

Let m be the least integer for which mh\>h and let H=mhi. Let 
m— 1 

jhi - a). (4.2) 

Then 

(4.3) 

G(x) = £ ^F(x 
i-0 

G ( * ) - 0 £ x < H, 

and <?(#) = 0 otherwise. Let n be the least positive integer such that 
(nH+hyi*(2n+\)-l<e. Let 

(4.4) 

n - i r / 2£ + 1\ 

An understanding of the manner in which g€(x) approximates g(x) is 
enhanced by drawing graphs of the terms of the sum in (4.4) and of 
the function ge(x). The function ge(x) is so constructed that 

(4.5) | g(x) - ge(x) | = (2n + l ) - \ 0£ x<nH+h, 

and |g(#) — ge(x)\ =0 elsewhere. Hence 

/

oo /» nH-\- h 

I g(x) ~ ge(x) \*>dx~ I {In + l)~*dx 
- 0 0 « ' t ) 

= (nH+ h)(2n+ 1)-* 
and 
(4.7) ||g - g«|| - (nH + A)1/'(2» + l)""1 < e. 

This completes the proof of Lemma 4.1 and hence also that of Theo
rem 1.3. 

It is apparent that the above method for approximating g(x) in Lp, 

(4.6) 
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P>1, fails when £ = 1 ; when p=l and e is small, one is unable to 
choose a positive integer n such that the last inequality in (4.7) holds. 
As a matter of fact, no method can serve. For if g(x) could be ap
proximated in Li by linear combinations of translations of G(x), then 
we could prove that SI{TQ) = L I ; and this would contradict the second 
Wiener theorem cited in §1. 

When h, H, and e are fixed, e being small, the number n of terms 
in (4.4) required to define the function g*(x) is a function of p which 
increases as p decreases. This indicates that the approximation in Lp 

of g(x) by linear combinations of translations of G(x) becomes more 
difficult as p decreases toward 1. This is in accord with the fact that 
the approximation is impossible when £ = 1 . 

5. An indicator. Let p^l and let ƒ be an element of Lp. The num
ber !<*>(ƒ) defined by 

(5.1) /<»>(ƒ) = l.u.b. g.l.b. | | * - F | | , 
o F 

where the g.l.b. is taken for all F in M(Tf) and the l.u.b. is then 
taken for all g in Lp for which ||g|) = l, is an indicator of the extent 
to which linear combinations of translations of ƒ(#) span Lp. If 
SP(T/) = LP, then ICî?)(/) = 0, and the converse holds. In any case, 
OrgI(p)(f)S1. I t would be interesting to have information about 
7(2,)(/). The author has very little. I t seems to be true that if ƒ is 
a simple step function, then 7(1)(/) = 1. 

6. A corollary of Theorem 1.3. When one is seeking to determine 
whether SP(T/)~LP, the following theorem may be helpful. 

THEOREM 6.1. Let p>\, and let f be an element of Lp. In order that 
Sp{Tf) = Lp, it is necessary and sufficient that Sp(Tf) contain at least 
one simple step function. 

Necessity is trival. Sufficiency is a consequence of Theorem 1.3 and 
Lemma 3.1. 

7. Uniform approximation. The theorems of this section deal with 
uniform approximation, over the infinite interval — oo<#<oo , of 
functions g(x) by linear combinations of translations of a given simple 
step function. 

THEOREM 7.1. If F(x) is a simple step function, then to each simple 
step function g(x) and positive number e corresponds a linear combina
tion ge(x) of translations of F(x) such that 

(7.2) | g(x) - g.(x) | < e, - oo < x < oo. 
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Let e > 0 . In case g(x) = l over 0^x<h and g(x) = 0 otherwise, 
(4.5) shows that the function ge(x) defined explicitly in (4.4) has the 
required property provided n is chosen so great that n~l<e. In case 
g(x) = c over a^x<a+h, the function cg€(x— a) has the required 
property. This proves Theorem 7.1. 

THEOREM 7.3. Let Fix) be a simple step function. Then to each con-
tinuous function f(x), for which f(x)—>0 as #—>oo and as #—»— oo, and 
positive number e corresponds a linear combination f€(x) of translations 
of F(x) such that 

(7.4) | f(x) - f€(x) | < €, - OO < tf < 00. 

To prove this theorem, let e > 0 and choose M such that 

(7.5) | ƒ(*)! < e / 2 , | x\ è M. 

Because ƒ (#) is uniformly continuous over —M^x^M, we can con
struct a step function <t>(x), vanishing outside the interval — Mèx 
g M1 such that 

(7.6) | f{x) - 4>(x) | < €/2, - oo < x < oo. 

Since </>(#) is a linear combination of simple step functions, it follows 
from Theorem 7.1 that there is a linear combination ƒ€ix) of transla
tions of Fix) such that 

(7.7) \<l>ix) - ƒ . ( * ) ! < e/2, - oo < x < oo. 

The required representation (7.2) follows. 
There are, of course, bounded functions which cannot be uniformly 

approximated by step functions, that is, by finite linear combinations 
of simple step functions. For example, sin x and sin x~l (the latter func
tion being defined to be 0 when x ~ 0 ) cannot be. However, the con
clusion of Theorem 7.3 holds for all functions fix) so approximate . 
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