
ON THE BLOCH-LANDAU CONSTANT FOR 
SCHLICHT FUNCTIONS 

RUTH E. GOODMAN 

The definition of the Bloch-Landau constant 2t is based upon the 
following theorem due to Bloch:1 

THEOREM 1. There is an absolute positive constant P with the following 
property: Let f{x) be regular for \x\ < 1 , | / '(0)| = 1 . Then the map of 
| x\ < 1 under f {x) contains in a single sheet an open circle of radius P . 

In addition to the original Bloch constant S3, the least upper bound 
of the P satisfying the above theorem, Landau2 has defined two other 
constants, S and St, in connection with this theorem. 8 is the least 
upper bound of the P of Theorem 1 if the requirement that there 

FIG. 1 

be a circle of radius P contained in a single sheet is replaced by the 
requirement that there be a circle of radius P each point of which 
is an interior point of some sheet of the map. 21 is the least upper 
bound of the P of Theorem 1 if it is required that the function fix) 
be schlicht for \x\ < 1 . It is immediately apparent that 33^8^21. 

Received by the editors August 14, 1944. 
1 Bloch, Les théorèmes de M. Valiron sur les f onctions entières, et la théorie de V uni­

formisation, C. R. Acad. Sci. Paris vol. 178 (1924) pp. 2051-2052. 
2 E. Landau, Über die Blochsche Konstante und zwei verwandte Weltkonstanten, 

Math. Zeit. vol. 30 (1929) pp. 608-634. This paper includes a proof of Theorem 1. 
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The exact value of none of these three constants is known, although 
upper and lower bounds have been established for all three constants. 
Landau2 proved that 8<2l ; that 58 < 8 was proved by Ahlfors.8 

The best upper bound given so far for the constant 31 is due to 
Robinson:4 3t<0.658. This result was obtained by mapping \x\ < 1 
on to a circle with six radial slits, three each of two different lengths, 
symmetrically placed. (See Fig. 1.) The lengths of the slits are deter­
mined so as to make the ten circles shown in the region all maximal. 

Robinson's procedure is capable of extension to an infinite sequence 
of mappings, which can be successfully exploited. The nth region of 
this sequence (see Fig. 2) is tha t portion of the slit plane enclosed 
by the circle \y\ =Rn. The radial slits of the nth region fall along the 
lines through the origin and the 3- 2n"1st roots of unity. The Rn are 
determined so tha t the maximal circles in every region shall be of 
radius unity. 

FIG. 2 

A similar sequence of regions may be defined for every integer 
s^3, by beginning with s slits falling along the s lines through the 
origin and the 5th roots of unity, and ending on the circle \y\ = 1. 
Call the regions of this sequence G,8, C2,«, C3,«, • • • . 

(Note tha t the region G,3, although it contains two sets of three 
slits each, is not exactly the region D of Fig. 1. The region C2,z 
contains only four maximal circles, since it is bounded by the circle 
\y\ =-R2 = 2.9557, which passes through the ends of the third set of 

8 L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. vol. 43 
(1938) pp. 359-364. 

4 R. M. Robinson, The Block constant Vtfor a schlicht function, Bull. Amer. Math. 
Soc. vol. 41 (1935) pp. 535-540. 
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slits. The circle \y\ =2.9561 which bounds D is tangent to the six 
outer maximal circles in D.) 

Let y =/n,«(aO,/n,«(0)=0, be the function which maps \x\ < I o n to 
Cn,, ( 5 ê 3 ; » « l , 2, 3, • • • ). 

I t is clear that the upper bound B„,8 for 21 furnished by mapping 
\x\ < 1 on to Cn,9 is 

nsBn,;= i/\/Uo)\. 
THEOREM 2. Letf(x) and g(x) be regular f or \x\ < 1 , / ( 0 ) = g ( 0 ) = 0 . 

Letf(x) map \x\ < 1 onto F and g(x) map \x\ < 1 onto G, where FQG. 
Then\f(0)\<\g'(0)\. 

This result is readily proved by noticing that the function g~~l(f(x)) 
satisfies the conditions of Schwarz's lemma.5 

Since C i . a C G . a C C ^ C • • • > it is clear, by Theorem 2, that the se­
quence {Bit8, ^2,«, Bz,s, • • • } is monotonically decreasing to a posi­
tive limit Boo,,. 

THEOREM 3. If s>3, then BO0,8>BO0,z. 

PROOF. Let Pi,8 be the entire plane with the 5 slits of the region 
52£ i Cj,8 which end on the unit circle. Let y = g(x)f g(0)=0, map 
\x\ < 1 on to Pi, , . Now Pi,«DC«,« for fixed 5 and every n. By Theo­
rem 2 it follows tha t 

BK„^l/\g'(0)\. 
Since the function 

*(*) = * / ( l - %Y 

transforms \x\ < 1 into the entire plane slit along the negative real 
axis from — oo to —1/4, therefore 

g(x) = ( - 4*(*0)17% 

I g'(0) | = */•. 

1/ | g '(o) | = 1/41'* > 0.707 (s = 4). 

By Theorem 2, J500f3<jB2,3, and the value B2,z<0.658 is found by com­
putation. (For the method of computation, see reference 4.) Combina­
tion of the above inequalities gives Theorem 3. 

Since the case 5 = 3 is the only one hereafter of interest, we shall 
from now on drop the subscript " 3 " from the notations ƒn,z(x), Cn,z, 
Bntz. Thus the mapping regions Cn are now exactly those of Fig. 2. 

THEOREM 4. 3Ï = B00< 0.65647. 

whence 

Thus 

5 See L. R. Ford, Automorphic functions, p. 166. 
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PROOF. The function of the sequence {fn(x)} which maps \x\ < 1 
on to CA is 

Mx) = RtKWfah{K*(p*k(K*(p%k(- X(#ift(*8))))))))f 

where 
k(x) = x/(l — x)2, K(x) = the inverse of k(x). 

The constants p$mappearing in f±(x) are determined, in terms of the 
radii R3-, so as to adjust properly the lengths of the slits in C4: 

p, = - 4 J ( _ {Rz/R^), 

pz = m(^K(R2/RiY*)\ 

p2 = 4M (— N(— k((R1/R,y2))\ 
\p3 \P 

px = E/(E + p2), E « ±N(— N(- K(V^4)12))Y 

where 

M{b) = (42>2 + J)1/2 - 2b, N(b) = (4Ô2 + b)1'2 + 2b, 

and where 

JRo = 1, Rt = 2, £2 = 2.9557, i?n = 1 + esc ( T T / 3 - 2 ^ 1 ) for w ^ 3 . 

Since 

1/B4 = 1 ƒ/«>) 1 - ^ v w o 1 " , 
we find 

§1 â £ „ < J54 < 0.65647. 

I t is possible to show tha t the upper bound of B^ given in Theo­
rem 4 is accurate to four significant figures, by considering the func­
tions gn(%), gn(0) = 0, which map \x\ < l on to the regions Pn, defined 
as follows: Let Pn be the entire plane with all those slits of the region 
Coo=X^^i CV which end on the circles \y\ = Rk (k=0,1, 2, • • • , n~ 1; 
Ro = 1 ). Let Dn = l/\gn (0)I. Then by Theorem 2 the sequence {Dn} 
increases monotonically to a limit D^^B^. 

By observing6 that the sequences {ƒ*(#)} and {gn(#)} are both 
normal families on the unit circle, we can conclude that they con­
verge regularly on \x\ < 1 to a common limit function <£(#)• Indeed, 
<j>(x) maps \x\ < 1 on to C», the common kernel of the sequences of 
regions {Cn} and {P„} .Thus 

6 See Carathéodory, Conformai representation, chap. 5. 
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A o - 1 / | * ' ( 0 ) | =£00 . 

It is interesting, however, to note that we can prove this last state­
ment directly, without resort to the more powerful theorems on the 
behaviour of normal families: 

THEOREM 5. D^^B*. 

PROOF. If Qn is the region into which Cn is transformed by the 
function 

Unix) = 4 ^ w ( - É( - {%/Rn)W (M = 3-2-1), 

then QnDPn* For Qn is easily seen to be the whole plane with ju slits 
along the same lines as the ix slits of Pn. Let yQ be the end point of 
one of the slits in Qn. The end point of the slit in Pn along this same 
line is some point Rhe

2mvilli (0Sh<n; 0^m<jj). Now 

|y. I - I un(Rhe
im^) I - ^RsRl/iK + R ^ > Rh, 

whence indeed QnZ>Pn-
Now the function wn(x)=un(fn(x)) transforms \x\ <1 into Qn. Fur­

thermore, 
| W ( 0 ) | = | ^ ( 0 ) | - I ƒ/ (0) I. 

Now |wn'(0)| =>41/M. Thus, by applying Theorem 2 to the relation 
QnDPnD Cn, we have 

I «fc'(0) I - 41/* I /n'(0) I > I gn'(0) I > I /n'(0) I (M - 3-2*-*). 

But 41/M—>1 as w—» 00, whence Theorem 5 is true. 

THEOREM 6. 0.65646 <J3oo<0.65647. 

PROOF. The function of the sequence {gn(*0} which maps \x\ <1 
on to Pz is 

«.(*) - (g,*(JP(Jf*(- X ( - <?i*(*3))))))1/6, 

where 

ça = 4J8Î, (72 - 41f (*î/g,), gi = 4N(l/q3)/(4N(l/qz) + q2), 

where M(b), N(b), i?i, 2?2 are as before. Since 

l / J D . - | g / ( 0 ) | -qï'faù1", 

we have the result stated in the theorem : 

0.65646 < Dz < D* = B„. 
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Robinson has proved7 tha t if f(x), /'(O) = 1, /(O) = 0 , maps | * | < 1 
on to R, where the largest open circle in R has exactly the radius 31, 
then R has the following property: If the analytic arc D is part of the 
boundary of R, then there are points of R on each side of D in the 
neighborhood of any point of D. I t is interesting to note that our best 
upper bound Bw for 3Ï is furnished by a region with this property. 

Although the numerical improvement over Robinson's result is not 
very marked, the mapping of the unit circle \x\ < 1 on the open slit 
plane C«> has some features of interest. Each ray through the origin 
which does not fall on a slit (that is, a ray whose angle with the posi­
tive real axis is different from 27rm/3 • 2n) determines a "prime end."8 

Such a ray is mapped on to a curve which has a well defined end point 
on the unit circle. Through the introduction of prime ends the map­
ping of the interior of domains can be extended to the boundary 
points.9 The points on the boundary of the unit circle are mapped 
either into the slits in C«> or into prime ends. The set S of all points 
on the unit circle which go over into prime ends is a nowhere dense 
perfect Cantor set, while the points which are mapped on the slits 
form denumerably many intervals which lie everywhere dense. 

Now the set S is of measure 0. Indeed, let y*=<j>(x) map | * | < 1 on 
Coo. Then <£(#)"-» °° when x approaches a point of S. Thus the function 

$(x) = x/<j>(x) 

is regular and bounded in \x\ < 1 , since on \x\ < 1 , | * ( ^ ) | ^ 1 / a , 
where a is the shortest distance from the origin to a point on a slit. 
Now by a theorem of Fatou, a regular and bounded function ap­
proaches a limit almost everywhere on the unit circle. We can there­
fore extend $>(#) to the boundary (as we have already done indirectly 
for <j>(x) by the introduction of prime ends). The extended <£(#) is 0 
on 5. By a theorem of F . and M. Riesz,10 we know that a bounded 
analytic function, which is not identically 0, can attain the value 0 
on the unit circle in at most a set of measure 0. Thus rnS = 0. 
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7 R. M. Robinson, Block functions, Duke Math. J. vol. 2 (1936) pp. 458-459. 
8 See C. Carathéodory, Über die Begrenzung einfach zusammenhangender Gebiete, 

Math. Ann. vol. 73 (1912) pp. 323-370. 
9 See Hurwitz-Courant, Funktionentheorie, pp. 400-405. 
10 F. and M. Riesz, Über die Randwerte einer analytischen Funktion, Compte 

Rendu du Quatrième Congrès des mathématiciens Scandinaves, Stockholm, 1916, 
pp. 27-44. See also G. Szegö, Über die Randwerte einer analytischen Funktion, Math. 
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