A NOTE ON THE REPLICAS OF NILPOTENT MATRICES

HSIO-FU TUAN

In a recent paper, ${ }^{1}$ Chevalley proved the following theorem:
(A) If Z is a nilpotent matrix over a field K of characteristic 0 , the only replicas Z^{\prime} of Z are the matrices $Z^{\prime}=t Z, t \in K .{ }^{2}$

For the proof of (A), he made use of a particular case of a theorem due to Ado and gave a proof for the results which he needed. In the present note, we shall give a direct simple proof of (A) and we shall in fact deduce it as an immediate consequence of the stronger theorem:
(B) If Z and Z^{\prime} are two nilpotent matrices over a field K of characteristic 0 , and if $q(x)$ and $r(x)$ are two polynomials with coefficients in K and without constant terms such that $Z^{\prime}=q(Z)$ and $Z_{0,2}^{\prime}=r\left(Z_{0,2}\right)$, then $Z^{\prime}=t Z, t \in K$.

We shall later establish corresponding results for fields K of prime characteristics, to be stated as theorems (C) and (D).

That (A) is implied by (B) follows immediately from the fact that if Z^{\prime} is a replica of Z, then $Z_{r, s}^{\prime}=p_{r, s}\left(Z_{r, s}\right)$, where $p_{r, s}(x)$ are polynomials in K without constant terms. ${ }^{3}$

For the proof of (B), let n be the degree of Z and Z^{\prime} and let m be the least nonnegative integer such that $Z^{m+1}=0$. Clearly $0 \leqq m \leqq n-1$. The case $Z=0$ is trivial; we can therefore assume $1 \leqq m \leqq n-1$. Let also l be the least nonnegative integer such that $\left(Z_{0,2}\right)^{l+1}=0$. Clearly $Z_{0,2}$ is nilpotent and $1 \leqq l \leqq n^{2}-1$. We shall see that $m \leqq l \leqq 2 m$.

The matrix Z can be transformed by an (n, n) matrix T with coefficients in the algebraic closure \bar{K} of K into the following form :

$$
Z_{1}=T^{-1} Z T=\left(\begin{array}{lllll}
0 & & & & \tag{1}\\
z_{1} & 0 & & & \\
& \ddots & & & \\
& \ddots & \ddots & \\
& & z_{n-1} & 0
\end{array}\right)
$$

where z_{1}, \cdots, z_{n-1} are zeros and ones and not all zeros. Then for

[^0]any integer $i, 1 \leqq i \leqq m$, we have
(1) ${ }_{i}$
\[

$$
\begin{aligned}
& z_{i, j}=z_{j} \cdots z_{i+j-1}, \quad j=1, \cdots, n-i .
\end{aligned}
$$
\]

Hence if we write

$$
\begin{equation*}
q(x)=q_{1} x+\cdots+q_{m} x^{m}, q_{i} \in K, \quad i=1, \cdots, m \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
Z_{1}^{\prime}=T^{-1} Z^{\prime} T=T^{-1} q(Z) T=q\left(T^{-1} Z T\right)=q\left(Z_{1}\right) \tag{3}
\end{equation*}
$$

Denoting the (n, n) identity matrix by E, we have then ${ }^{4}$
(4) ${ }_{1}$

$$
\left(Z_{1}\right)_{0,2}=Z_{1} \oplus Z_{1}=Z_{1} \otimes E+E \otimes Z_{1}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccccc}
0 & & & & \\
z_{1} E & 0 & & & \\
& \ddots & \ddots & & \\
& \ddots & 0_{0} & \\
& & & z_{n-1} E & 0
\end{array}\right)+\left(\begin{array}{lllll}
Z_{1} & & & \\
& Z_{1} & & \\
& & \ddots & \\
& & & Z_{1} & \\
& & & Z_{1}
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
Z_{1} & & & \\
z_{1} E & Z_{1} & & \\
& \ddots & \ddots & \\
& & \ddots & & \\
& & & Z_{1} & \\
& & & z_{n-1} E & Z_{1}
\end{array}\right) \text {, }
\end{aligned}
$$

hence for any positive integer $i,{ }^{5}$

[^1](4) ${ }_{i}$
\[

$$
\begin{aligned}
\left(\left(Z_{1}\right)_{0,2}\right)^{i} & =\left(Z_{1} \otimes E+E \otimes Z_{1}\right)^{i} \\
& =Z_{1} \otimes E+\sum_{j=1}^{i-1} C_{i, j} Z_{1}^{i-j} \otimes Z_{1}^{j}+E \otimes Z_{1}^{i}
\end{aligned}
$$
\]

$$
=\left(\begin{array}{lllll}
Z_{1}^{i} & & & & \\
& Z_{1}^{i} & & & \\
& & \ddots & & \\
& * & & Z_{1}^{i} & \\
& & & Z_{1}^{i}
\end{array}\right)
$$

($C_{i, j}$ being the binomial coefficients), and therefore $m \leqq l \leqq 2 m$. We may write

$$
\begin{equation*}
r(x)=r_{1} x+\cdots+r_{l} x^{l}, \quad r_{i} \in K, \quad i=1, \cdots, l \tag{5}
\end{equation*}
$$

and then

$$
\begin{align*}
\left(Z_{1}^{\prime}\right)_{0,2} & =Z_{1}^{\prime} \oplus Z_{1}^{\prime}=Z_{1}^{\prime} \otimes E+E \otimes Z_{1}^{\prime} \\
& =T^{-1} Z^{\prime} T \otimes T^{-1} E T+T^{-1} E T \otimes T^{-1} Z^{\prime} T \\
& =\left(T^{-1} \otimes T^{-1}\right)\left(Z^{\prime} \otimes E+E \otimes Z^{\prime}\right)(T \otimes T) \tag{6}\\
& =(T \otimes T)^{-1} Z_{0,2}^{\prime}(T \otimes T)=(T \otimes T)^{-1} r\left(Z_{0,2}\right)(T \otimes T) \\
& =r\left((T \otimes T)^{-1} Z_{0,2}(T \otimes T)\right)=r\left(\left(Z_{1}\right)_{0,2}\right)
\end{align*}
$$

Consequently the same relations originally assumed for Z and Z^{\prime} now hold for Z_{1} and Z_{1}^{\prime}. For simplicity in notations, we shall now just consider Z and Z^{\prime} for Z_{1} and Z_{1}^{\prime} in the related formulas (1) i , (3), (4) ${ }_{\mathrm{i}}$, (6).

Now, on the one hand,

$$
\begin{aligned}
Z_{0,2}^{\prime} & =Z^{\prime} \oplus Z^{\prime}=Z^{\prime} \otimes E+E \otimes Z^{\prime}=q(Z) \otimes E+E \otimes q(Z) \\
& =E \otimes q(Z)+\left(q_{1} Z+\cdots+q_{m} Z^{m}\right) \otimes E \\
& =E \otimes q(Z)+Z \otimes q_{1} E+\cdots+Z^{m} \otimes q_{m} E \\
& =\left(\begin{array}{cccc}
q(Z) & \\
q_{1} z_{1} E & q(Z) & \\
& q_{2} z_{2} E & q(Z) & \\
* & \ddots & \ddots & \\
& & \ddots & q(Z) \\
& & & \\
& & \\
& & \\
q_{1} z_{n-1} E & q(Z)
\end{array}\right)
\end{aligned}
$$

while, on the other hand,

$$
\begin{aligned}
& Z_{0,2}^{\prime}=r\left(Z_{0,2}\right)=r_{1} Z_{0,2}+r_{2}\left(Z_{0,2}\right)^{2}+\cdots+r_{l}\left(Z_{0,2}\right)^{l} \\
& =r_{1}(Z \oplus Z)+r_{2}(Z \oplus Z)^{2}+\cdots+r_{l}(Z \oplus Z)^{l} \\
& =r_{1}(Z \otimes E+E \otimes Z)+r_{2}\left(Z^{2} \otimes E+2 Z \otimes Z+E \otimes Z^{2}\right) \\
& +\cdots+r_{l}\left(Z^{l} \otimes E+\sum_{i=1}^{l-1} Z^{l-i} \otimes Z^{i}+E \otimes Z^{l}\right) \\
& =E \otimes\left(r_{1} Z+r_{2} Z^{2}+\cdots+r_{l} Z^{l}\right) \\
& +Z \otimes\left(r_{1} E+2 r_{2} Z+\cdots+r_{1} Z^{l-1}\right) \\
& +\cdots+Z^{l} \otimes r_{l} E \\
& =E \otimes r(Z)+Z \otimes r^{\prime}(Z)+Z^{2} \otimes(1 / 2) r^{\prime \prime}(Z) \\
& +\cdots+Z^{l} \otimes(1 / l!) r^{(l)}(Z) \\
& =\left(\begin{array}{cccccc}
r(Z) & & & & & \\
z_{1} r^{\prime}(Z) & r(Z) & & & \\
& z_{2} r^{\prime}(Z) & & r(Z) & & \\
& & & \ddots & \ddots & \\
& & & \ddots & & \\
& & & & & \\
& & & z_{n-1} r^{\prime}(Z) & & \\
& & & & & \\
& & & &
\end{array}\right) \text {, }
\end{aligned}
$$

where $r^{\prime}(x), r^{\prime \prime}(x), \cdots, r^{(l)}(x)$ are the successive derivatives of $r(x)$.
In (7) and (8), comparing the terms (which are (n, n) matrices) on the main diagonal and on the first parallel just below, we obtain

$$
\begin{equation*}
q(Z)=r(Z) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
q_{1} z_{i} E=z_{i} r^{\prime}(Z) ; \quad i=1, \cdots, n-1 \tag{10}
\end{equation*}
$$

(9) gives

$$
q_{1} Z+\cdots+q_{m} Z^{m}=r_{1} Z+\cdots+r_{l} Z^{l}, \quad l \geqq m
$$

and hence

$$
q_{j}=r_{j}, \quad j=1, \cdots, m
$$

(10) gives

$$
q_{1} z_{i} E=z_{i}\left(r_{1} E+2 r_{2} Z+\cdots+\operatorname{lr}_{l} Z^{l-1}\right), \quad i=1, \cdots, n-1
$$

by (11),

$$
z_{i}\left(2 q_{2} E+\cdots+m q_{m} Z^{m-1}+\cdots\right)=0, \quad i=1, \cdots, n-1
$$

as not all z_{i} (for $i=1, \cdots, n-1$) are zero, hence

$$
2 q_{2} E+\cdots+m q_{m} Z^{m-1}+\cdots=0
$$

and consequently

$$
\begin{equation*}
2 q_{2}=\cdots=m q_{m}=0 \tag{12}
\end{equation*}
$$

Now K is of characteristic 0 ; we can therefore conclude

$$
\begin{equation*}
q_{2}=\cdots=q_{m}=0 \tag{13}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
Z^{\prime}=q_{1} Z=t Z \tag{14}
\end{equation*}
$$

with $q_{1}=t \in K$, as is to be proved.
Let us now suppose that K is of prime characteristic, say p. If $p>m$, which is certainly the case if $p \geqq n$, then we can still infer (13) from (12) and hence still have (14) as before. For the cases $p \leqq m$, from (12) we can only infer that

$$
\begin{equation*}
q_{i}=0, \quad 2 \leqq i \leqq m, \quad p \nmid i, \tag{15}
\end{equation*}
$$

and hence we can only conclude that Z^{\prime} is necessarily of the form

$$
\begin{equation*}
Z^{\prime}=q_{1} Z+q_{p} Z^{p}+q_{2 p} Z^{2 p}+\cdots+q_{m^{\prime} p} Z^{m^{\prime} p} \tag{16}
\end{equation*}
$$

where $m^{\prime}=[m / p]$, the largest integer not greater than m / p. In fact, the conclusions (13) and (14) are then no longer true in general.

We shall first prove that $Z^{\prime}=Z^{\alpha}$ with $\alpha=p^{a}$ (a being any nonnegative integer) is a replica of Z. This follows from the facts:

$$
\begin{aligned}
Z_{r, s}^{\prime}= & \left(Z^{\alpha}\right)_{r, 8}=\underbrace{\left(Z^{\alpha}\right) \oplus \cdots \oplus\left(Z^{\alpha}\right)}_{r} \oplus \underbrace{\left(Z^{\alpha}\right) \oplus \cdots \oplus\left(Z^{\alpha}\right)}_{s} \\
= & \left(-{ }^{t} Z^{\alpha}\right) \oplus \cdots \oplus\left(-{ }^{t} Z^{\alpha}\right) \oplus Z^{\alpha} \oplus \cdots \oplus Z^{\alpha} \\
= & -\left({ }^{t} Z^{\alpha}\right) \otimes \cdots \otimes E \otimes E \otimes \cdots \otimes E-\cdots \\
& -E \otimes \cdots \otimes\left({ }^{t} Z^{\alpha}\right) \otimes E \otimes \cdots \otimes E \\
& +E \otimes \cdots \otimes E \otimes Z^{\alpha} \otimes \cdots \otimes E+\cdots \\
& +E \otimes \cdots \otimes E \otimes E \otimes \cdots \otimes Z^{\alpha} \\
= & \left(-{ }^{t} Z \otimes \cdots \otimes E \otimes E \otimes \cdots \otimes E-\cdots\right. \\
& -E \otimes \cdots \otimes t Z \otimes E \otimes \cdots \otimes E \\
& +E \otimes \cdots \otimes E \otimes Z \otimes \cdots \otimes E+\cdots \\
& +E \otimes \cdots \otimes E \otimes E \otimes \cdots \otimes Z)^{\alpha} \\
= & \left(Z_{r, s}\right)^{\alpha},
\end{aligned}
$$

because $(-1)^{\alpha}= \pm 1 \equiv-1(\bmod p)$ for $p=2$ and $(-1)^{\alpha}=-1$ for $p \neq 2$.

We shall now prove that conversely if $Z^{\prime}=q(Z)=\sum_{i=1}^{m} q_{i} Z^{i}$ with $q_{i} \in K$ is a replica of Z, then we have

$$
\begin{equation*}
Z^{\prime}=q(Z)=\sum_{j=1}^{m_{0}} q_{i(j)} Z^{i(j)}, \quad i(j)=p^{i}, \quad i\left(m_{0}\right) \leqq m<i\left(m_{0}+1\right) . \tag{18}
\end{equation*}
$$

We shall show more strongly that only then $Z_{1,1}^{\prime}=s\left(Z_{1,1}\right)$, where $s(x)$ is a polynomial with coefficients in K and without the constant term.

We can assume that Z is of the form (1); because as before,

$$
\left(Z_{1}^{\prime}\right)_{1,1}=\left(T^{-1} Z^{\prime} T\right)_{1,1}=\left({ }^{t} T^{-1} \otimes T\right)^{-1} Z_{1,1}^{\prime}\left({ }^{t} T^{-1} \otimes T\right)
$$

hence $Z_{1,1}^{\prime}=r\left(Z_{1,1}\right)$ implies also

$$
\begin{align*}
\left(Z_{1}^{\prime}\right)_{1,1} & =\left({ }^{t} T^{-1} \otimes T\right)^{-1} s\left(Z_{1,2}\right)\left({ }^{t} T^{-1} \otimes T\right) \\
& =s\left(\left(T^{t-1} \otimes T\right)^{-1} Z_{1,1}\left(T^{t} T^{-1} \otimes T\right)\right)=s\left(\left(Z_{1}\right)_{1,1}\right) . \tag{19}
\end{align*}
$$

Then, for any positive integer $i, 1 \leqq i \leqq m$, we have
$(20)_{i}$

$$
\begin{aligned}
& \left(Z^{\prime}\right)^{i}=(-t Z)^{i}=(-1)^{i t} Z_{i}
\end{aligned}
$$

$$
\begin{aligned}
& z_{i, j}=(-1)^{i} z_{j} \cdots z_{i+j-1}, \quad j=1, \cdots, n-i,
\end{aligned}
$$

and further
(21) ${ }_{i}$

$$
\begin{aligned}
& \left(Z_{1,1}\right)^{i}=\left(Z^{\prime} \oplus Z\right)^{i}=\left(Z^{\prime} \otimes E+E \otimes Z\right)^{i}=(-t \otimes E+E \otimes Z)^{i} \\
& =(-1)^{i} Z^{i} \otimes E+\sum_{j=1}^{i-1}(-1)^{i-j} C_{i, j} Z^{i-j} \otimes Z^{i}+E \otimes Z^{i} \\
& =\left(\begin{array}{ccccc}
Z & -z_{1} E & & & \\
Z & \ddots & \ddots & \\
& \ddots & \ddots & \ddots & \\
& & Z & & { }_{-z_{n-1} E}
\end{array}\right)^{i}=\left(\begin{array}{lllll}
Z^{i} & & & \\
& Z^{i} & & \\
& & \ddots & \\
& & & & \\
& & & & \\
& & & & \\
& & & & Z^{i}
\end{array}\right) \text {, }
\end{aligned}
$$

hence it follows as before that the least nonnegative integer k such that $\left(Z_{1,1}\right)^{k+1}=0$ satisfies $m \leqq k \leqq 2 m$. We can therefore write

$$
\begin{align*}
s(x) & =s_{1} x+\cdots+s_{k} x^{k} \quad \quad\left(s_{i} \in K\right) \\
& =\left(s_{1} x+\cdots+s_{m} x^{m}\right)+\left(s_{m+1} x^{m+1}+\cdots+s_{k} x^{k}\right) \\
& =s^{\prime}(x)+s^{\prime \prime}(x) \tag{22}
\end{align*}
$$

We have

$$
\begin{align*}
Z_{1,1}^{\prime} & =Z^{\prime} \oplus Z=\left(-Z^{\prime}\right) \oplus Z=-Z^{\prime} \otimes E+E \otimes Z^{\prime} \\
& =-q(Z) \otimes E+E \otimes q(Z) \tag{23}\\
& =E \otimes q(Z)+\sum_{j=1}^{m} Z^{j} \otimes\left(-q_{j} E\right)
\end{align*}
$$

while, on the other hand,

$$
\begin{align*}
Z_{1,1}^{\prime} & =\sum_{i=1}^{k} s_{i}\left(Z_{1,1}\right)^{i}=\sum_{i=1}^{k} s_{i}(-t Z \otimes E+E \otimes Z)^{i} \\
& =\sum_{i=1}^{k} s_{i} \sum_{j=\max (0, i-m)}^{\min (i, m)} C_{i, j}(-t Z)^{j} \otimes Z^{i-j} \\
& =\sum_{j=0}^{m} Z^{j} \otimes(-1)^{j}\left(\sum_{i=\max (1, j)}^{\min (k, m+j)} s_{i} C_{i, j} Z^{i-j}\right) \tag{24}\\
& =E \otimes \sum_{i=1}^{m} s_{i} Z_{i}+\sum_{j=1}^{m} t Z^{j} \otimes(-1)^{i}\left(\sum_{i=j}^{\min (k, m+j)} s_{i} C_{i, j} Z^{i-j}\right) \\
& =E \otimes s^{\prime}(Z)+\sum_{j=1}^{m} Z^{j} \otimes s_{j}(Z),
\end{align*}
$$

where $s_{j}(x)$ are polynomials with coefficients in K for $j=1, \cdots, m$ (observe $\max (0, i-m) \leqq \min (i, k-m) \leqq \min (i, m)$). Writing the matrix $Z_{1,1}^{\prime}$ as given by (23) and (24) in the form of two compound (n, n) matrices whose elements are again (n, n) matrices and comparing the terms on their main diagonals and on their m first parallels above the main diagonals, we can then conclude that first

$$
\begin{align*}
q(Z) & =\sum_{i=1}^{m} q_{i} Z^{i}=\sum_{i=1}^{m} s_{i} Z^{i}=s(Z), \tag{25}\\
q_{i} & =s_{i}, \tag{26}
\end{align*} \quad i=1, \cdots, m ;
$$

and that also

$$
z_{j, h}\left(-q_{j} E\right)=z_{j, h} s_{j}(Z), \quad j=1, \cdots, m, h=1, \cdots, n-j
$$

as $Z^{\prime j} \neq 0$ for $j=1, \cdots, m$, so for each j we have at least one h, say $h(j)$ ($=$ one of $1, \cdots, n-j$), such that $z_{j, h(j)} \neq 0$, then $z_{j, h(j)}= \pm 1$, and hence

$$
\begin{align*}
& -q_{j} E=s_{j}(Z)=(-1)^{j} \sum_{i=j}^{\min (k, m+j)} s_{i} C_{i, j} Z^{i-j} \\
& =(-1)^{i} s_{j} E+(-1)^{j} \sum_{i=j+1}^{\min (k, m+j)} s_{i} C_{i, j} Z^{i-j,} \\
& 0=\left(1+(-1)^{j}\right) s_{j} E+(-1)^{j} \sum_{i=j+1}^{\min (k, m+j)} s_{i} C_{i, j} Z^{i-j}, \tag{27}\\
& \left(1+(-1)^{j}\right) s_{j}=0, \quad s_{i} C_{i, j}=0, \quad j=1, \cdots, m ; \tag{28}\\
& \quad i=j+1, \cdots, \min (k, m+j)^{6}
\end{align*}
$$

(observe $\min (k, m+j) \geqq m)$, in particular

$$
\begin{equation*}
s_{i} C_{i, j}=0, \quad i=2, \cdots, m ; j=1, \cdots i-1 \tag{29}
\end{equation*}
$$

Now it is easily seen that if $i=p^{i i^{\prime}}$ with $p \nmid i^{\prime}$, then $p \nmid C_{i, i / i^{\prime},{ }^{7}}$ hence it follows immediately that if $i^{\prime} \neq 1$, namely, $i \neq p^{j}$ for $j=1, \cdots, m_{0}$ with $p^{m_{0}} \leqq m<p^{m_{0}+1}$, then $q_{i}=s_{i}=0$ for $i=2, \cdots, m$, as was to be proved.

Summarizing our results for fields K of characteristic $p \neq 0$, we have the following theorems:
(C) If Z and Z^{\prime} are two nilpotent matrices over a field K of characteristic $p \neq 0$, and if $q(x), r(x)$ and $s(x)$ are three polynomials with coefficients in K and without constant terms such that $Z^{\prime}=q(Z), Z_{0,2}^{\prime}=r\left(Z_{0,2}\right)$ and $Z_{1,1}^{\prime}=s\left(Z_{1,1}\right)$, then we have

$$
\begin{equation*}
Z^{\prime}=q(Z)=\sum_{j=0}^{m_{0}} t_{i} Z^{i(j)}, \quad i(j)=p^{j}, \quad t_{j} \in K \tag{30}
\end{equation*}
$$

(D) If Z is a nilpotent matrix over a field K of characteristic $p \neq 0$, the only replicas Z^{\prime} of Z are the matrices (30).

Princeton University

[^2]
[^0]: Received by the editors July 17, 1944.
 ${ }^{1}$ Claude Chevalley, On a kind of new relationship between matrices, Amer. J. Math. vol. 65 (1943) pp. 521-531.
 ${ }^{2}$ Theorem 6, p. 530, loc. cit.
 ${ }^{3}$ Lemma 4, p. 529, loc. cit.

[^1]: ${ }^{4}$ We define $A \otimes B=\left(a_{i i}\right) \otimes B=\left(a_{i j} B\right)$. Observe that $(A \otimes B)(C \otimes D)=A B \otimes C D$. The heavy cross and heavy plus used in Chevalley's paper are here replaced by \otimes and \oplus.
 ${ }^{5}$ In the following, ${ }^{*}$ denotes the terms in which we are not interested.

[^2]: ${ }^{6}$ If $k=m$, then for $j=m$, there is no $i, j+1 \leqq i \leqq \min (k, m+j)$.
 ${ }^{7}$ Consider $p^{i}=p^{i} \cdots 1$ and $i \cdots\left(i-p^{i}+1\right)=\left(p^{i}+p^{i}\left(i^{\prime}-1\right)\right) \cdots\left(1+p^{i}\left(i^{\prime}-1\right)\right)$. As $p^{v} \| u$ (namely $p^{v} \mid u$ and $\left.p^{v+1} \mid u\right)$ for $u=p^{i} ; \cdots, 1$ implies $p^{v} \|\left(u+p^{i}\left(i^{\prime}-1\right)\right)$ because $v \leqq j$, so $p \nmid C_{i, i / i^{\prime}}$.

