THE BASIS THEOREM FOR VECTOR SPACES OVER RINGS

C. J. EVERETT

It is the purpose of this note to establish the following theorem :
Theorem. A vector space $M=u_{1} K+\cdots+u_{m} K$ of m basis elements over a ring $K=\{0, a, b, \cdots, 1\}$ with unit 1 has the property that every subspace $N>0$ possesses a basis of $n \leqq m$ elements if and only if K is a right principal-ideal-ring without zero-divisors.

That such a ring insures the basis condition for subspaces is well known [3, p. 121]. ${ }^{1}$

Suppose now that every subspace $N>0$ has a basis of $n \leqq m$ elements. It has been shown [2, Theorem (F)] that every right ideal $R>0$ of K must then have a single generator: $R=r_{0} K$, where $r_{0} k=0$ implies $k=0$. Moreover, since every right ideal has a finite set of generators, the ascending chain condition must hold for right ideals of K [3, p. 26]. It therefore suffices to prove the following two lemmas.

Lemma 1. In a ring K with unit 1 and ascending chain condition for right ideals, equations $a b=1, a c=0$ imply $c=0$.

If $c \neq 0$, the linear transformation $k \rightarrow a k, k \in K$, would be of type (iv) [2, p. 313], that is, $K / K_{0} \cong K$, and $0<K_{0}<K_{1}<K_{2}<\cdots$, where K_{i} is defined inductively as the set of all elements of K mapped into elements of K_{i-1}. This contradicts the chain condition.

Lemma 2. A ring K with unit in which every right ideal $R>0$ is of the form $r_{0} K$, where $r_{0} k=0$ implies $k=0$, has no zero divisors.

Let $s c=0, s \neq 0$, and $s K=r_{0} K \neq 0$, where $r_{0} k=0$ implies $k=0$. We have $s=r_{0} a, r_{0}=s b=r_{0} \cdot a b, r_{0}(a b-1)=0$, and hence $a b=1$. Also, $s c=0=r_{0} a c$, and $a c=0$. Since Lemma 1 applies to $K, c=0$.

It should be noted that the result follows also from a result of Baer's [1, Theorem 5 or Lemma 4] which states that in a ring with unit and weak maximal condition, $a b=1$ implies $b a=1$.

Bibliography

1. R. Baer, Inverses and zero-divisors, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 630-638.

[^0]2. C. J. Everett, Vector spaces over rings, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 312-316.
3. B. L. van der Waerden, Moderne Algebra, vol. 2, 1st ed., Berlin, 1931.

University or Wisconsin

ON A CONSTRUCTION FOR DIVISION ALGEBRAS OF ORDER 16

R. D. SCHAFER

It is not known whether there exist division algebras of order 16 (or greater) over the real number field \Re. In discussing the implications of this question in algebra and topology, A. A. Albert told the author that the well known Cayley-Dickson process ${ }^{1}$ does not yield a division algebra of order 16 over \Re and suggested a modification of that process which might. It is the purpose of this note to show that, while Albert's construction can in no instance yield such an algebra over \Re, it does yield division algebras of order 16 over other fields, in particular the rational number field R.

Initially consider an arbitrary field F. Let C be a Cayley-Dickson division algebra of order 8 over F. Define ${ }^{2}$ an algebra of order 16 over F with elements $c=a+v b, z=x+v y(a, b, x, y$ in $C)$ and with multiplication given by

$$
\begin{equation*}
c z=(a+v b)(x+v y)=(a x+g \cdot y b S)+v(a S \cdot y+x b) \tag{1}
\end{equation*}
$$

where S is the involution $x \rightleftarrows x S=t(x)-x$ of C and g is some fixed element of C. The Cayley-Dickson process is of course the instance $g=\gamma$ in F.

For A to be a division algebra over F the right multiplication ${ }^{1} R_{z}$ must be nonsingular for all $z \neq 0$ in A. Now

$$
R_{z}=\left(\begin{array}{cc}
R_{x} & S R_{y} \\
S L_{y} L_{0} & L_{x}
\end{array}\right)
$$

[^1]
[^0]: Presented to the Society, November 25, 1944; received by the editors February 14, 1945.
 ${ }^{1}$ Numbers in brackets refer to the bibliography.

[^1]: Received by the editors January 19, 1945, and, in revised form, March 19, 1945.
 ${ }^{1}$ See [1] and [2] for background and notations. Numbers in brackets refer to the references cited at the end of the paper.
 ${ }^{2}$ We should remark that this modification of the Cayley-Dickson process does yield non-alternative division algebras of orders 4 and 8 over \Re when applied to the algebras of complex numbers and real quaternions instead of to C. See R. H. Bruck, Some results in the theory of linear non-associative algebras, Trans. Amer. Math. Soc. vol. 56 (1944) pp. 141-199, Theorem 16C, Corollary 1, for a generalization.

