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7. Ernst Snapper: Polynomial matrices in one variable, differential 
equations and module theory. 

This paper establishes the foundation for the theory of matrices A = («»•ƒ), where 
(«»•;) GP [XI, • • • , xn]. Part I treats the case » » 1. Contrary to the classical procedure 
which uses sub-determinants of A, the theory is developed intrinsically in terms of the 
column space C and row space R of A. The meanings of the irreducible factors and 
multiplicities of the norm and elementary divisor of A for Cand R thus become clear. 
Systems of linear differential equations and algebraic equations are fully discussed. 
Part II reviews and extends the ideal theoretic module theory, developed by P. M. 
Grundy in A generalization of additive ideal theory, Proc. Cambridge Philos. Soc. vol. 
38 (1942), and by the author in Structure of linear sets, Trans. Amer. Math. Soc. 
vol. 52 (1942). This theory is the foundation for the case n>\. A general theory of 
systems of linear equations over any ring x is developed. All known criteria for the 
solvability of such systems for special rings are corollaries of the criterion of lengths 
of this general theory. If r=P[a;], the theory becomes the theory of Part I. (Received 
October 7, 1945.) 

8. Ernst Snapper: Polynomial matrices in several variables. 
This paper discusses the theory of matrices A = («<,), where «<j£:P[#i, • • • , xn]. 

The module theory, discussed in Part II of the author's paper Polynomial matrices 
in one variable, differential equations and module theory, associates several invariants 
to the column space Cand the row space R of A, for example the associated primes p1r 

the ^/-lengths, the ^/-elementary divisors, and so on. Since R and C are polynomial 
modules, the theory of the Hubert characteristic function can be developed for them 
which gives rise to one further invariant, called the ^-degree. In terms of these in­
variants, the theory of the system of linear partial differential equations and alge­
braic equations, represented by A, is investigated. Furthermore, the irreducible fac­
tors and multiplicities of the norm and elementary divisor of A, as denned by the 
author in The resultant of a linear set, Amer. J. Math. vol. 66 (1944), are explained in 
terms of the above invariants. (Received October 7, 1945.) 

ANALYSIS 

9. N. R. Amundson : On the boundary value problem of third kind 
for the quasi-linear parabolic differential equation. 

The author considers the quasi-linear parabolic equation with boundary condi­
tions of the third kind for the open rectangle, that is, uxx=f(x, y, u, p, q) ; — a\Uz-\-biu> 
^Ciiy), when x~Q; ö2«*+&2« = c2(y), when x — l\ u~<f>(x), when y^O, where d(y) 
and 0<{t,>(#) are continuous and bi/ai are non-negative constants. By use of the Green's 
function for the problem the above system is shown to be equivalent to a nonlinear 
integro-differential equation. Assuming that f(x, y, u, p, q) is continuous in all five 
variables, and that its partial derivatives with respect to y, u, p, q satisfy a Lipschitz 
condition in u, p, q and are bounded, the existence of a solution u(x, y) of the integro-
differential equation is proved by an iteration method. Under the further assumption 
the ux and uy satisfy a Holder condition with respect to y, the uniqueness of the solu­
tion u(x, y) is established. M. Gevrey {Thèse, Journal de mathématique (6) vol. 9 
(1913) and vol. 10 (1914)) considers the same differential equation for boundary con­
ditions of the first kind. (Received October 19, 1945.) 
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10. E. W. Barankin: On the eigen-values of infinite matrices and of 
linear integral equations. Preliminary report. 

In a recent paper (Bull. Amer. Math. Soc. vol. 51 (1945)) the author established 
several symmetric upper bounds for the characteristic roots of a finite matrix. The 
methods there employed are carried over to the discretely infinite and continuous 
cases, to give, under weak restrictions to insure convergence, the corresponding re­
sults. For an infinite matrix the bounds are of the same form (with some small 
exceptions) as in the finite case. For the general homogeneous linear integral equation 
/o00 K(s,t)fWt*=\f(s) the bounds obtained are |x|« £ l.u.b.w {/o°° \K(s, t)\dt 
•/0°° | jKÖ,5)| i«} f |x |£l.u.b.wyr |X(* ,0 | * | x | £ l . u .b . ( . ) / r \K(t,s)\ dt, and certain 

generalizations of the first of these. (Received November 17, 1945.) 

11. E. M. Beesley and A. P. Morse: <t>-Cantorian functions and 
their convex moduli. 

A set function </>* may be associated with a function <f> which is nondecreasing on 
[0, oo) with 0(0+) =^(0) =0. A set AQ.I is said to be 0-Cantorian if it is the inter­
section of a denumerable sequence of sets each of which is associated with a family 
of intervals satisfying certain conditions involving <f> and J. lîf(x) s=!0*((~ <*>, x] 'A) 
where A is a 0-Cantorian set, then ƒ is called a 0-Cantorian function. The convex 
modulus * of a function ƒ has the property that |/(*2) —f(h) | £ $(&—h) and satisfies 
certain other conditions. Methods for construction of 0-Cantorian sets and for de­
termination of the convex modulus are considered. These methods are employed to 
construct in any interval a set of Lebesgue measure zero which cannot be covered by 
any sequence of intervals whose lengths are equal to a prescribed sequence of numbers 
whose sum is less than the length of the original interval. A symmetric product 
measure is constructed and a perfect plane set is exhibited which has measure one 
but which cannot be expressed as a sum of a denumerable sequence of sets of finite 
measure after being subjected to a properly chosen shear or rotation. (Received 
November 19, 1945.) 

12. Lipman Bers and Abe Gelbart: A topological property of solu­
tions of partial differential equations. 

Given a function u(x, y) defined in a domain D and satisfying the elliptic differ­
ential equation (aux-\-buy)X'jr(bux-i-cUy)y^01 where a, b, c are analytic functions of x 
and y; then there exists a homeomorphism of D into a domain A of the £, rç-plane 
which takes u into a harmonic function of £ and rj. The proof is based on Stöilow's 
topological characterization of analytic functions of a complex variable. (Received 
October 19, 1945.) 

13. D. G. Bourgin: A class of generating functions. 
This note continues previous work on orthonormal sequences of the type {f(nx)}. 

Among other things it is shown that if the associated <f>(z) belongs to K' and has a 
finite base, then <}>{z) is a quasi elementary solution. (Received October 19, 1945.) 

14. D. G. Bourgin: Complete sets of functions. 
(A) Let {gn(x)} be O.N. and complete in L2(E). Let Fn(x)-fn{x)—gn(x). Then, 

under certain minor convergence conditions, a sufficient condition for completeness 
of {fn(x)} is that the Grammian of {Fn(x)} have a bound inferior to 1. In particular, 
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the restriction supig*<«°]!C/| [JF<, FJ]\ <1 is sufficient. (B) If gn(x)**sm w#and ƒ»(#) 
=ƒ(«#) with f(x)~sin x—]£&< sin ix, then a sufficient condition for completeness of 
{ƒ»(*)} in the space of odd functions in Z»2( —ir, w) is essentially that 

53 [Fit Fj] cos (log i—log j)x£6 <1 where the sum is taken over all relatively 
prime integers i and j . If only a finite number of fa's are nonvanishing, 0 can be 1. 
Some theorems of Szâsz type are also given. (Received October 18, 1945.) 

15. R. H. Cameron and W. T. Martin: The orthogonal development 
of nonlinear functionals in series 0} Fourier-Hermite functionals. 

The authors show that certain products of Hermite functions of orthogonal linear 
functionals form a closed orthonormal set in the space Lf of nonlinear (that is, not 
necessarily linear) functionals of the Wiener integrable square. In terms of this set, 
each functional F of L2* can be developed in an orthogonal series which converges to 
F in the mean of £2*. (Received October 19, 1945.) 

16. Herman Chernofï: Complex solutions of partial differential 
equations. I. 

The author considers certain classes Q of complex solutions of equations 
Au-\-Aux+Buy-}-Cu~0. Bergman demonstrated certain properties of these classes 
(see Bergman, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 130-155 and vol. 57 
(1945) pp. 299-331). The author investigates the distribution of ^-points of functions 
« £ C- ^ e introduces in the usual manner the notion of the index of a ô-point (that is, 
generalized concept of multiplicity) and denotes by n[r, (u—b)~l\ the sum of the 
indices of points where u = & in \z\ <r (z~x-\-iy). Let 2irm [r, u] =* /O

rlog+ | u\ dB where 
z**reid. Using Nevanlinna's Second Fundamental Theorem, the author gives an upper 
bound for m[r,u] in terms of 2l)S-i# [rt (u—a9)~

l].This upper bound holds for a certain 
restricted set of positive r. However in certain cases it is shown that r belongs to 
this set if r is large enough and u j^av on \z\ —r. For certain subsets of functions uÇzQ, 
it is proved (in analogy of the Picard Theorem) that u attains all finite values. (Re­
ceived November 14, 1945.) 

17. A. E. Heins and Norbert Wiener: A generalization of the 
Wiener-Hopf integral equation. 

A method is given which enables one to find the solutions of the integral equations 
of the type (*)ƒ(*) - X/o°° K(x+y)f(y)dy where K(x) - 0(r*), x-> co, and 0(1/*), *->0. 
This is accomplished by decomposing (*) into an infinite sequence of bilateral faltung 
integral equations, each of which depends on the solution of the previous one. The 
final result appears as an infinite series of integral operators, applied to a known 
function. An example for which the final answer appears in closed form is given. 
(Received November 13, 1945.) 

18. Mark Kac: Distribution of eigenvalues of certain integral equa­
tions with an application to roots of Bessel functions. Preliminary re­
port. 

Let p(«)el»(— 00, 00), p(w)=»p(—u) and let F(Q**f2»p(u) cos u£du be also in 
L(— oo, 00). Consider the eigenvalues Xi(a), ^2(0), • • • , of the integral equation (*) 
f^p(s-^t)f(t)dt**\f(s). It is shown that for n^2 the limit of (2a)"E^» a s a-*00» 
is iTxf0 Fn(Ç)d%. Denoting by N{a, /3; a) the number of eigenvalues of (*) which fall 
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within (a, /3) (not containing 0) it is easy to calculate explicitly lima^«(2a)"1iV(a, 0; a) 
in terms of F(£). If Y > 0 and Xifo), XJCT), • • • , are the eigenvalues of the integral 
equation(**)/^exp (-y\s\)p(s-t) exp (-7|/ | ) /(/)^«X/W,thenthelimitof 7 X X 
as 7—>0, is (irn)~lf™ Fn(£)d£. Denoting by N(a, 0; 7) the number of eigenvalues of (**) 
which fall within (a, 0) it is again easy to calculate limy+w N(at 0; 7) in terms of 
F(£). If in (**) one puts p{u)' — 2~x exp ( — | u | ) the eigenvalues are expressible in terms 
of roots of Ji/y(x) and Ji/y(x). As a consequence one obtains the following result: 
If 2V(a; v) denotes the number of positive roots of Jp(x) which are less than av ( a> l ) 
then v~lN{a\ v)—>7r""1{(a2 — l)1 '2 — arc tan (a2 — l ) l / 2 } . This in turn implies, among 
others, that if rv(v) is the vth positive root of Jv(x), then ?""lrF(i>)-*fl£+lf where xi is 
the first positive root of tan x—x. (Received October 18, 1945.) 

19. Charles Loewner: On pairs of quadratic forms in Hubert space. 
One may ask which of the infinitely many linear transformations in w-space trans­

forming two given positive definite forms A(x, *) " E i V * ' * ' » &(*> x) ^ S \hp9x
px9 

into each other is the most "economical." The answer will depend on the method by 
which the economy is measured. It is natural to introduce a metric in the space of 
linear transformations and to call that transformation the most economical which is 
closest to the identity. Again, it is natural to use a metric that is intrinsically con­
nected with the two given forms. A positive definite form represents a metric in the 
vector space. In a well known manner one can derive from it a metric in an arbitrary 
tensor space, especially in the space of linear transformations. It is remarkable that the 
two minimum problems derived in this way from the given forms have the same 
unique solution. Its matrix T0 can be expressed by the matrices A and B of the given 
forms as that square root {A~xB)ll2 whose characteristic values are all positive. These 
elementary considerations can be generalized to Hubert space by a suitable modifica­
tion of the extremum problem. It can be shown that a suitable (A^B)112 has similar 
extremum properties as in the finite-dimensional case. (Received October 22,1945.) 

20. L. B. Robinson: Solution of an integral equation by alternating 
successive approximations. I. 

In the integral equation w(»)=xX)Li(^»W/Q»n(»))/ï(l+52)-KP»'nW/Qin(5)) 
• u(s~v)ds-\-PAn{x)/Qin(x) + E ' -^oK^nW/ofeW) , P and Q are polynomials of order 
n and p is an integer. The adjoint is u(x~x) «»x]£J..i(P<n(#~l) /(?i,n(*~l))/o"""(l+$2)~1 

Pin(s^)/Qin(s^)u(s+P)ds+P4n(x^)/Qin(x^)+E ^Voi(Pin(x^)/Qin(x^)). By alter­
nating successive approximations obtain u(x) and u(x~l) and then weld them together 
by calculating the v0 as linear functions of the Wo. The uQ may be all zero. The author 
made his calculations using the number 3 but 3 can be replaced by any integer. (Re­
ceived November 2, 1945.) 

21. L. B. Robinson: Solution of an integral equation by alternating 
successive approximations. II. 

Write u(x) =X/S(1 -H2)"1^*, « / ( l +s))u(r*)ds+F(x), ws/(l +s) = er, T / ( 1 +S) « r . 
G, Fare finite in the real domain with period x, -—ir. Then u(x) =X/J(l-r-52)~"x{ao(#) 
H-]C m-i[<im(x) cos w<r-f bm(x) sin m<r]}u(s~2)ds+F(x),u(x~l) «X^~(1+5 2 )" 1 {ao^"1) 
+H m-i[omixr-1) cos mr + &»(*""*) sin mr]} u (s+2) ds + F(x~l) + £ m - i k t r 1 ) ^ 
+&i»(#-*1)fm]. Solve by alternating successive approximations. u(x) and u(x~l) con­
verge within the unit circle. The two can be welded together if the constants Um, vm 
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are selected properly. The results can be extended to the complex domain. (Received 
November 2, 1945.) 

22. Robert Schatten (National Research Fellow) and John von 
Neumann: The cross-space of linear transformations. II. 

The present notation is that of Bull. Amer. Math. Soc. Abstract 51-9-162. For 
any crossnorm a^X, ($81® «$82)* may be considered as a Banach space of linear trans­
formations from #1 into 582* (from $B2 into «1*), while #i*®a'$2*C(#i®a$32)* may be 
considered as the Banach space of all those linear transformations of ($81®«$82)* which 
may be approximated in norm by linear transformations with finite-dimensional range. 
In particular for a Hubert space $, $®<y$ = (̂ )<S>x$)* represents the atrace-class,n 

that is, all linear transformations T on $ with finite trace; the norm y(T)=* trace 
(T'T)ll2, where T' represents the adjoint of T. It is also shown that X does not 
necessarily represent the least crossnorm, that is, there exist crossnorms whose associ­
ates are not crossnorms. (Received November 13, 1945.) 

23. Menahem Schiffer: Hadamard's formula and variation of do­
main-functions. 

Hadamard's formula for the variation of the Green's function g(x, y) for a varying 
domain D holds for smooth boundaries only. Considering special variations of D and 
using Green's identity, one may express this variation in terms of g and its deriva­
tives at interior points of D only, resulting in a formula valid for general domains D. 
This was previously derived by the author in another way (Amer. J. Math. vol. 65 
(1943) pp. 341-360). The same variation formula holds for many other domain-
functions, for example, log \f(x) |, where f(x) maps D on the exterior of a circle slit 
along concentric arcs and radial "stretches. n In the case of smooth boundaries, the 
formula may be transformed into one of Hadamard's type, but is different for each of 
the domain-functions mentioned. The general formula is of wide applicability in ex-
tremum problems of conformai representation. Utilizing the periods of the analytic 
function with real part g(x, y), one obtains variation formulae for the harmonic 
measures and the capacity constants of the different boundary continua. The method 
also permits applications in the theory of Riemann surfaces. The variation of the 
elementary integrals and their periods satisfy very similar formulae for a general class 
of deformations. (Received October 22, 1945.) 

24. C. F. Stephens: Solutions of systems of nonlinear difference equa­
tions in the neighborhood of a singular point. 

Consider the system of nonlinear difference equations (1) yi(x-\-\) tBt$j£é*wJ>n(x)yi{& 
+xkfi(yi(x)t • • • , yn(x); x) where the ƒ»• begin with terms of the second degree in 
yi(x), are analytic functions of y (x), and continuous functions of x in the neighborhood 
of (#=00, yi(x)—0, • • • , yn(x) =0). k is taken to be a positive integer and 
*i(0, • • • , 0; x) m 0. By making use of the transformation y<(#) — [V(x)]zi(x), 
where r(#) is the well known gamma function, and the earlier results of the author 
(Bull. Amer. Math. Soc. Abstract 50-5-148), one shows that there exist many solu­
tions of equations (1). These solution functions are continuous functions of x in a 
certain domain extending to infinity on the left and approach zero as a limit as x ap­
proaches infinity on rays parallel to the negative axis of reals. (Received October 18, 
1945.) 
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25. S. E. Warschawski: On the modulus of continuity of the mapping 
function at the boundary in conformai mapping. 

The author proves the following theorem: Let D be a simply connected region 
such that (i) D contains the unit circle and is contained in \w\ <R; (ii) if D is divided 
into two parts by a crosscut of diameter B < 1, then the diameter d of the subregion of 
D which does not contain the origin satisfies the inequality dS^-\"n (M ami 77 are 
constants, /*s£l, y^0). Suppose that w=f(z) maps \z\ <1 conformally onto D 
(/(O) «0, /'(O) >0). Let k be an arbitrary constant, fc^4i?2, Jfe>/u2. If z0 is any point 
on Iz\ « 1 and if Zi and z% are in \z\ <1 with \zi —z0\ ^ r ^ e x p [—for2/4], then 
|/(zi)-/(*2)| ^(Jfera/M)+^1/2/(^1/2-M) where a**(2/(ir*k))(\og k-2 log ju). This re­
sult is applied to the following problem. Let & and & be closed Jordan curves con­
taining w~0 in their interiors A', such that C2 is in the e-neighborhood of & (that is, 
every point of C% is within a circle of radius e about some point of &) and C% in the 
«-neighborhood of ft. Let w*=fi(z) map |z| <1 onto Dt (/.-(O) =0, ƒ»• (0)>0). Then a 
function $(e) is determined, which, aside from €, depends only on certain parameters 
characterizing the Q, such that |/i(2) —f%(z) | ^ *(e) for | ̂  | ^ 1 . (Received October 19, 
1945.) 

26. J. W. T. Youngs: Various definitions of surface and area. Pre­
liminary report. 

This paper lists several definitions of the word "surfacen and uses recent results 
in the field to show how the term "area" can be applied to each. The principal result 
is that in each case the area is a lower semi-continuous function of the surface. (Re­
ceived October 17, 1945.) 

APPLIED MATHEMATICS 

27. Edward Kasner and John DeCicco: Heat surfaces. 
If a region of space is heated by conduction, the temperature v at a time t at a 

point (x, y, z) is v—<f>(x, y, z, t), where <f> satisfies the Fourier heat equation. Kasner 
has introduced the term heat surfaces for those along which v*>*const, and /«const. 
In general, there are <x>2 heat surfaces. In the present work, the authors extend to 
space certain theorems of Kasner concerning heat families in the plane, published in 
1932-1933, Proc. Nat. Acad. Sci. U.S.A. There are no systems of 002 planes or oo2 

spheres which form a heat family except in the imaginary domain. The only sets of 001 
planes which form a heat family are the pencils. A system of *>1 spheres is a heat 
family if and only if it is a concentric set. The only isothermal systems of planes are 
pencils and the only isothermal sets of spheres are concentric families. The cases 
where there are only °ol heat surfaces are connected with the equations of Laplace, 
Poisson, and Helmholtz-Pockels. Finally, these results are extended to n dimensions. 
(Received October 11, 1945.) 

28. H. E. Salzer: Coefficients for repeated integration with central 
differences. 

The present paper is aimed toward facilitating double or Mold repeated quadra­
ture of a function which is tabulated at a uniform interval, with its central differences 
of even order (see Abstract 51-9-172). When the Everett interpolation formula is 
integrated k times over an interval of tabulation, one obtains a formula for stepwise 
multiple quadrature in the form (1) fi\-- • flJlJWtdx^^h^A^h+Bffi 


