CYLINDERS IN A CONE

B. M. STEWART AND F. HERZOG

1. The two problems. Let B_{0} be the ($k-1$)-volume ${ }^{1}$ of a figure that lies in a ($k-1$)-dimensional hyperplane of the k-dimensional euclidean space R_{k}. Throughout this paper k will be a fixed integer greater than unity. Let Q be any point in R_{k}, not a point of the hyperplane containing B_{0}, and let h be the length of the altitude drawn from Q to the hyperplane containing B_{0}. If Q is joined to each point of B_{0} by

Fig. 1.
a line, the resulting figure is a k-dimensional cone whose k-volume V is given by $V=B_{0} h / k$. If P_{0} is the foot of the above altitude, choose n points $P_{1}, P_{2}, \cdots, P_{n}$ on $P_{0} Q$ in the natural order $P_{0}, P_{1}, P_{2}, \cdots$, P_{n}, Q. Through $P_{i}(i=1,2, \cdots, n)$ draw a hyperplane parallel to B_{0} cutting the cone in a ($k-1$)-dimensional figure B_{i} which is similar to B_{0}. Let $V_{i n}$ be the k-volume of the right cylinder one of whose bases is B_{i} while the opposite base lies in the hyperplane containing $B_{i-1}(i=1,2, \cdots, n)$. Let $X_{n}=V_{1 n}+V_{2 n}+\cdots+V_{n n}$ and let $x_{1 n}, x_{2 n}, \cdots, x_{n n}$ be the altitudes of the cylinders $V_{1 n}, V_{2 n}, \cdots, V_{n n}$, respectively. (Here $x_{i n}$ is the length of $P_{i-1} P_{i}$.)

Figures 1 and 2 illustrate the cases $k=2, n=4$ and $k=3, n=3$, respectively.

Received by the editors August 22, 1945.
${ }^{1}$ By " m-volume" we mean the m-dimensional content; thus 1 -volume $=$ length, 2 -volume=area, and so on.

Our first problem is to obtain the maximum of X_{n} for fixed n when no restrictions other than the above are placed upon the $V_{i n}$. Our second problem is to obtain the maximum of X_{n} for fixed n under the added condition that $V_{1 n}=V_{2 n}=\cdots=V_{n n}$. We shall refer to these problems hereafter as the first and second problems, respectively. ${ }^{2}$ In order to avoid ambiguity in notation we shall denote those values of the variables $X_{n}, x_{1 n}, x_{2 n}, \cdots, x_{n n}$ which correspond to the solution of the first problem by $S_{n}, s_{1 n}, s_{2 n}, \cdots, s_{n n}$, respectively, and those values which correspond to the solution of the second problem by $T_{n}, t_{1 n}, t_{2 n}, \cdots, t_{n n}$, respectively.

Fig. 2.
In the first problem we show that

$$
\begin{gather*}
S_{n}=y_{n}^{k-1} V, \tag{1}\\
s_{1 n}=\left(1-y_{n}\right) h, \\
s_{i n}=y_{n} y_{n-1} \cdots y_{n-i+2}\left(1-y_{n-i+1}\right) h, \quad i=2,3, \cdots, n ; \tag{2}
\end{gather*}
$$

where the numbers y_{n} are defined by the recursion formula

$$
y_{0}=0, \quad y_{n}=(k-1) /\left(k-y_{n-1}^{k-1}\right), \quad n=1,2, \cdots
$$

[^0]In the second problem we show that

$$
\begin{equation*}
T_{n}=k n u_{n} V \tag{4}
\end{equation*}
$$

(5) $t_{i n}=u_{n}\left[\left(1+u_{n-1}\right)\left(1+u_{n-2}\right) \cdots\left(1+u_{n-i}\right)\right]^{k-1} h, i=1,2, \cdots, n$; where the numbers u_{n} are defined by the recursion formula

$$
\begin{equation*}
u_{0}=1 /(k-1), \quad u_{n}=u_{n-1} /\left(1+u_{n-1}\right)^{k}, \quad n=1,2, \cdots \tag{6}
\end{equation*}
$$

2. Proof. The following formulas which will be needed in the proof follow easily from the proportion $B_{1} /\left(h-x_{1 n}\right)^{k-1}=B_{0} / h^{k-1}$:

$$
\begin{align*}
V_{1 n} & =B_{0} x_{1 n}\left(h-x_{1 n}\right)^{k-1} / h^{k-1}, \tag{7}\\
V^{\prime} & =B_{0}\left(h-x_{1 n}\right)^{k} / k h^{k-1}, \tag{8}
\end{align*}
$$

where V^{\prime} is the k-volume of the cone whose base is B_{1} and whose altitude $P_{1} Q$ has the length $h-x_{1 n}$.

The proofs of the results for both problems are by induction with respect to n. The two problems are identical when $n=1$, and by elementary calculus it follows readily from (7) together with $X_{1}=V_{11}$ that $s_{11}=t_{11}=h / k$ and that $S_{1}=T_{1}=[(k-1) / k]^{k-1} V$. These results agree with (1), (2), (4), and (5) when $n=1$.

In the first problem we assume that formulas (1) and (2) are correct for $n-1$ where $n \geqq 2$. Let $x_{1 n}$ be chosen arbitrarily ($0<x_{1 n}<h$) and, depending on the choice of $x_{1 n}$, let $x_{2 n}, x_{3 n}, \cdots, x_{n n}$ be chosen so as to maximize the combined k-volume of the remaining $n-1$ cylinders, namely:

$$
X_{n-1}^{\prime}=V_{2 n}+V_{3 n}+\cdots+V_{n n} .
$$

By the induction hypothesis (see (1)) the maximum of $X_{n-1}{ }^{\prime}$ is given by $S_{n-1}{ }^{\prime}=y_{n-1}{ }^{k-1} V^{\prime}$. We thus obtain, for each choice of $x_{1 n}$, a maximum value of X_{n}, namely, $X_{n}=V_{1 n}+S_{n-1}{ }^{\prime}$. Considering this X_{n} as a function of $x_{1 n}$, namely (see (7) and (8)),

$$
\begin{equation*}
X_{n}=B_{0} x_{1 n}\left(h-x_{1 n}\right)^{k-1} / h^{k-1}+y_{n-1}^{k-1} B_{0}\left(h-x_{1 n}\right)^{k} / k h^{k-1} \tag{9}
\end{equation*}
$$

we see that X_{n} reaches its maximum value S_{n} when $x_{1 n}$ has the value

$$
s_{1 n}=\frac{1-y_{n-1}^{k-1}}{k-y_{n-1}^{k-1}} h=\left(1-\frac{k-1}{k-y_{n-1}^{k-1}}\right) h
$$

or by (3) we may write

$$
\begin{equation*}
s_{1 n}=\left(1-y_{n}\right) h, \tag{10}
\end{equation*}
$$

in agreement with (2). Substituting this value of $s_{1 n}$ for $x_{1 n}$ in (9) and using (3) we obtain (1).

It remains to show (2) for $i=2,3, \cdots, n$. Note that $S_{n-1}{ }^{\prime}$ represents the solution of the first problem for V^{\prime}. Hence if the altitudes of
these $n-1$ cylinders are denoted by $s_{1, n-1}{ }^{\prime}, s_{2, n-1}{ }^{\prime}, \cdots, s_{n-1, n-1}{ }^{\prime}$, we have $s_{i n}=s_{i-1, n-1}^{\prime}$ for $i=2,3, \cdots, n$ and hence by the induction hypothesis (see (2)) $s_{i n}=y_{n-1} y_{n-2} \cdots y_{n-i+2}\left(1-y_{n-i+1}\right)\left(h-s_{1 n}\right)$. By (10) this establishes (2) for $i=2,3, \cdots, n$. This completes the proof of (1) and (2).

In the second problem, the case $n=1$ having been disposed of above, we now assume that (4) and (5) are correct for $n-1$, where $n \geqq 2$. We shall choose $x_{1 n}$ arbitrarily but such that it is possible to inscribe $n-1$ cylinders of k-volume equal to $V_{1 n}$ in V^{\prime}. By the induction hypothesis (see (4)) this is possible if and only if

$$
\begin{equation*}
(n-1) V_{1 n} \leqq k(n-1) u_{n-1} V^{\prime} \tag{11}
\end{equation*}
$$

By virtue of (7) and (8) and the fact that $0<x_{1 n}<h$, the inequality (11) is equivalent to

$$
\begin{equation*}
0<x_{1 n} \leqq u_{n-1} h /\left(1+u_{n-1}\right) \tag{12}
\end{equation*}
$$

Our problem is therefore to maximize the quantity

$$
\begin{equation*}
X_{n}=n V_{1 n}=n B_{0} x_{1 n}\left(h-x_{1 n}\right)^{k-1} / h^{k-1} \tag{13}
\end{equation*}
$$

within the interval (12). But the function X_{n} increases over the interval $0<x_{1 n} \leqq h / k$ and the right-hand end point of the interval (12) is less than h / k. (This follows easily from (6): the u_{n} form a decreasing sequence of positive numbers, hence $u_{n-1} /\left(1+u_{n-1}\right)<u_{n-1} \leqq u_{1}$ $\left.=(k-1)^{k-1} / k^{k}<1 / k, n=2,3, \cdots.\right)$ Therefore the function X_{n} assumes its maximum in the interval (12) at the right-hand end point, so that we obtain $t_{1 n}=u_{n-1} h /\left(1+u_{n-1}\right)$ and by (6) we may write

$$
\begin{align*}
t_{1 n} & =u_{n}\left(1+u_{n-1}\right)^{k-1} h \tag{14}\\
h-t_{1 n} & =h /\left(1+u_{n-1}\right) \tag{15}
\end{align*}
$$

Substituting the values of $t_{1 n}$ and $h-t_{1 n}$ from (14) and (15) for $x_{1 n}$ and $h-x_{1 n}$ in (13) we obtain (4).

When $x_{1 n}$ assumes the value $t_{1 n}$ given in (14), the inequality (11) becomes an equation. Consequently, the $n-1$ cylinders $V_{2 n}, V_{3 n}, \cdots, V_{n n}$ must be the solution of the second problem for V^{\prime}. Hence if the altitudes of these cylinders are denoted by $t_{1, n-1}{ }^{\prime}$, $t_{2, n-1}{ }^{\prime}, \cdots, t_{n-1, n-1}{ }^{\prime}$, we have $t_{i n}=t_{i-1, n-1}{ }^{\prime}$ for $i=2,3, \cdots, n$ and hence, by the induction hypothesis (see (5)),

$$
t_{i n}=u_{n-1}\left[\left(1+u_{n-2}\right)\left(1+u_{n-3}\right) \cdots\left(1+u_{n-i}\right)\right]^{k-1}\left(h-t_{1 n}\right)
$$

By (15) and (6) this establishes (5) for $i=2,3, \cdots, n$. Since (14) agrees with (5) for $i=1$, this completes the proof.
3. Asymptotic formulas for S_{n} and T_{n}. The problem arises whether the quantities S_{n} and T_{n}, given by (1) and (4), respectively, can be expressed directly in terms of n. This seems possible only for the S_{n} in the case $k=2$, that is, for the problem of maximizing the combined area of n rectangles inscribed in a triangle. Indeed in this case (3) becomes $y_{n}=1 /\left(2-y_{n-1}\right)$, which together with $y_{0}=0$ yields easily by induction that $y_{n}=n /(n+1)$. Hence from (2) and (1) we obtain $s_{i n}=h /(n+1)$ for $i=1,2, \cdots, n$ and $S_{n}=n V /(n+1)$ or

$$
S_{n} / V=1-1 /(n+1)
$$

Thus the problem arises to give at least an asymptotic formula for S_{n} / V when $k \geqq 3$, as well as an asymptotic formula for T_{n} / V when $k \geqq 2$.

We begin by establishing an asymptotic formula for the y_{n} (in the case $k \geqq 3$). We put

$$
\begin{equation*}
z_{n}=1-y_{n} \tag{16}
\end{equation*}
$$

and obtain from (3)

$$
\begin{equation*}
z_{0}=1, \quad 1 / z_{n}=F\left(z_{n-1}\right), \quad n=1,2, \cdots \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
F(z)=\frac{k-(1-z)^{k-1}}{1-(1-z)^{k-1}} \tag{18}
\end{equation*}
$$

It is easily established from (3) by mathematical induction that ($k-1$) $/ k \leqq y_{n}<1$ so that by (16)

$$
\begin{equation*}
0<z_{n} \leqq 1 / k, \quad n=1,2, \cdots \tag{19}
\end{equation*}
$$

We shall need the two following facts about $F(z)$, defined in (18). In the first place,

$$
F(z)=1+\frac{k-1}{C_{k-1,1} z-C_{k-1,2} z^{2}+\cdots+(-1)^{k} z^{k-1}}
$$

The terms in the denominator on the right are decreasing in absolute value when $0<z<2 /(k-2)$, hence for such values we have $F(z)>1$ $+1 / z$, so that in particular by (19), since $1 / k<2 /(k-2)$,

$$
\begin{equation*}
F\left(z_{j}\right)>1+1 / z_{j}, \quad j=1,2, \cdots \tag{20}
\end{equation*}
$$

Secondly, we conclude from (18) that $F(z)$ is a regular function except for poles at the points $z=0$ and $z=1-\exp [2 \pi i m /(k-1)]$ with $m=1,2, \cdots, k-2$, so that $F(z)$ admits of a Laurent expansion in the
region $0<|z|<|1-\exp [2 \pi i /(k-1)]|=2 \sin [\pi /(k-1)]$. This Laurent series is easily seen to be

$$
\begin{equation*}
F(z)=1 / z+k / 2+G(z), \quad G(z)=\sum_{m=1}^{\infty} a_{m} z^{m} \tag{21}
\end{equation*}
$$

where the power series $G(z)$ converges for $|z|<2 \sin [\pi /(k-1)]$. Since $1 / k<4 /(k-1) \leqq 2 \sin [\pi /(k-1)]$ for $k \geqq 3$, we conclude that $G(z) / z$ is bounded for $|z| \leqq 1 / k$. The latter fact together with (19) yields

$$
\begin{equation*}
G\left(z_{n}\right)=O\left(z_{n}\right) \cdot .^{3} \tag{22}
\end{equation*}
$$

From (17) and (20) we have $1 / z_{j}>1+1 / z_{j-1}, j=2,3, \cdots$. By adding these inequalities from $j=2$ to $j=n$, we obtain $1 / z_{n}>n-1+1 / z_{1}$; hence

$$
\begin{equation*}
z_{n}=O(1 / n) \tag{23}
\end{equation*}
$$

From (17) and (21) we conclude that $1 / z_{j}=1 / z_{j-1}+k / 2+G\left(z_{j-1}\right)$, $j=2,3, \cdots$. By adding these equations from $j=2$ to $j=n$, we obtain

$$
\begin{equation*}
1 / z_{n}=1 / z_{1}+k(n-1) / 2+\sum_{i=1}^{n-1} G\left(z_{i}\right) . \tag{24}
\end{equation*}
$$

Applying (22) and (23) to the $G\left(z_{i}\right)$ in (24), we thus obtain

$$
\begin{aligned}
1 / z_{n} & =k n / 2+O(\log n)=(k n / 2)\left[1+O\left(n^{-1} \log n\right)\right] \\
z_{n} & =(2 / k n)\left[1+O\left(n^{-1} \log n\right)\right]=2 / k n+O\left(n^{-2} \log n\right)
\end{aligned}
$$

Therefore by substituting this result in (1), we obtain the following asymptotic formula, valid for $k \geqq 3$:

$$
\begin{aligned}
& S_{n} / V=y_{n}^{k-1}=\left(1-z_{n}\right)^{k-1}=\left[1-2 / k n+O\left(n^{-2} \log n\right)\right]^{k-1} \\
& S_{n} / V=1-2(k-1) / k n+O\left(n^{-2} \log n\right)
\end{aligned}
$$

To establish an asymptotic formula for T_{n} / V when $k \geqq 2$, we begin with an asymptotic formula for the u_{n}. We write (6) in the form $1 / u_{j}=\left(1+u_{j-1}\right)^{k} / u_{j-1}$ or

$$
\begin{equation*}
1 / u_{j}=1 / u_{j-1}+k+C_{k, 2} u_{j-1}+\sum_{m=3}^{k} C_{k, m} u_{j-1}^{m-1} \tag{25}
\end{equation*}
$$

where the \sum in (25) is to mean zero when $k=2$. By adding these equations from $j=2$ to $j=n$, we obtain

[^1]\[

$$
\begin{equation*}
1 / u_{n}=1 / u_{1}+k(n-1)+C_{k, 2} \sum_{i=1}^{n-1} u_{i}+\sum_{m=3}^{k} C_{k, m} \sum_{i=1}^{n-1} u_{i}^{m-1} \tag{26}
\end{equation*}
$$

\]

for $n=2,3, \cdots$ Hence since $u_{i}>0$ for $i=1,2, \cdots$, we have $1 / u_{n}>k(n-1)$ and

$$
\begin{equation*}
u_{n}=O(1 / n) \tag{27}
\end{equation*}
$$

Applying (27) to the u_{i} on the right of (26), we have (see footnote 3)

$$
\begin{align*}
1 / u_{n} & =k n+O(\log n)=k n\left[1+O\left(n^{-1} \log n\right)\right] \\
u_{n} & =(1 / k n)\left[1+O\left(n^{-1} \log n\right)\right]=1 / k n+O\left(n^{-2} \log n\right) \tag{28}
\end{align*}
$$

Using (28) in (26) we have, since $\sum_{i=1}^{n-1} i^{-2} \log i=O(1)$,

$$
\begin{aligned}
1 / u_{n} & =k n+2^{-1}(k-1) \log n+O(1) \\
& =k n\left[1+\frac{k-1}{2 k} \frac{\log n}{n}+O\left(\frac{1}{n}\right)\right] \\
u_{n} & =\frac{1}{k n}\left[1-\frac{k-1}{2 k} \frac{\log n}{n}+O\left(\frac{1}{n}\right)\right] .
\end{aligned}
$$

Finally, substituting this result in (4), we obtain the following asymptotic formula :

$$
T_{n} / V=1-\frac{k-1}{2 k} \frac{\log n}{n}+O\left(\frac{1}{n}\right)
$$

4. Table. In conclusion we append a brief table which indicates how involved the numbers $s_{i n}, S_{n}, t_{i n}, T_{n}$ become, even for small values of k and n.

First problem		Second problem			
	$k=2$	$k=3$		$k=2$	$k=3$
s_{11} / h	$1 / 2$	$1 / 3$	t_{11} / h	$1 / 2$	$1 / 3$
S_{1} / V	$1 / 2$	$4 / 9$	T_{1} / V	$1 / 2$	$4 / 9$
s_{12} / h	$1 / 3$	$5 / 23$	t_{12} / h	$1 / 5$	$4 / 31$
s_{22} / h	$1 / 3$	$6 / 23$	t_{22} / h	$2 / 5$	$9 / 31$
S_{2} / V	$2 / 3$	$324 / 529$	T_{2} / V	$16 / 25$	$17496 / 29791$

[^2]
[^0]: ${ }^{2}$ The second problem for the case $k=2, n=2$, but for a quarter-circle rather than a triangle, was treated in the following paper: B. M. Stewart, Two rectangles in a quartercircle, Amer. Math. Monthly vol. 52 (1945) pp. 92-94.

[^1]: ${ }^{3}$ The notation $f(n)=O(\phi(n))$ is used here to mean that $|f(n)|<A \phi(n)$ for sufficiently large n, where A is independent of n but may depend on k. In particular we shall use the fact that $\sum_{i=1}^{n-1}(1 / i)^{m}$ is of the form $\log n+O(1)$ when $m=1$ and of the form $O(1)$ when $m>1$. Also if $\phi(n) \rightarrow 0$ the reciprocal value of $1+O(\phi(n))$ is again of the form $1+O(\phi(n))$.

[^2]: Michigan State College

