CYLINDERS IN A CONE

B. M. STEWART AND F. HERZOG

1. The two problems. Let B_0 be the (k-1)-volume¹ of a figure that lies in a (k-1)-dimensional hyperplane of the k-dimensional euclidean space R_k . Throughout this paper k will be a fixed integer greater than unity. Let Q be any point in R_k , not a point of the hyperplane containing B_0 , and let k be the length of the altitude drawn from Q to the hyperplane containing B_0 . If Q is joined to each point of B_0 by

F1G. 1.

a line, the resulting figure is a k-dimensional cone whose k-volume V is given by $V = B_0 h/k$. If P_0 is the foot of the above altitude, choose n points P_1, P_2, \dots, P_n on P_0Q in the natural order $P_0, P_1, P_2, \dots, P_n$, Q. Through P_i $(i=1, 2, \dots, n)$ draw a hyperplane parallel to B_0 cutting the cone in a (k-1)-dimensional figure B_i which is similar to B_0 . Let V_{in} be the k-volume of the right cylinder one of whose bases is B_i while the opposite base lies in the hyperplane containing B_{i-1} $(i=1, 2, \dots, n)$. Let $X_n = V_{1n} + V_{2n} + \dots + V_{nn}$ and let $x_{1n}, x_{2n}, \dots, x_{nn}$ be the altitudes of the cylinders $V_{1n}, V_{2n}, \dots, V_{nn}$, respectively. (Here x_{in} is the length of $P_{i-1}P_i$.)

Figures 1 and 2 illustrate the cases k=2, n=4 and k=3, n=3, respectively.

Received by the editors August 22, 1945.

¹ By "m-volume" we mean the m-dimensional content; thus 1-volume=length, 2-volume=area, and so on.

Our first problem is to obtain the maximum of X_n for fixed n when no restrictions other than the above are placed upon the V_{in} . Our second problem is to obtain the maximum of X_n for fixed n under the added condition that $V_{1n} = V_{2n} = \cdots = V_{nn}$. We shall refer to these problems hereafter as the *first* and *second problems*, respectively.² In order to avoid ambiguity in notation we shall denote those values of the variables $X_n, x_{1n}, x_{2n}, \cdots, x_{nn}$ which correspond to the solution of the first problem by $S_n, s_{1n}, s_{2n}, \cdots, s_{nn}$, respectively, and those values which correspond to the solution of the second problem by $T_n, t_{1n}, t_{2n}, \cdots, t_{nn}$, respectively.

FIG. 2.

In the first problem we show that

$$S_n = y_n^{k-1} V,$$

(2)
$$s_{1n} = (1 - y_n)h,$$

$$s_{in} = y_n y_{n-1} \cdots y_{n-i+2} (1 - y_{n-i+1})h, \qquad i = 2, 3, \cdots, n_i$$

where the numbers y_n are defined by the recursion formula

(3)
$$y_0 = 0$$
, $y_n = (k-1)/(k-y_{n-1}^{k-1})$, $n = 1, 2, \cdots$.

² The second problem for the case k = 2, n = 2, but for a quarter-circle rather than a triangle, was treated in the following paper: B. M. Stewart, *Two rectangles in a quarter-circle*, Amer. Math. Monthly vol. 52 (1945) pp. 92–94.

In the second problem we show that

$$(4) T_n = knu_n V,$$

(5) $t_{in} = u_n [(1 + u_{n-1})(1 + u_{n-2}) \cdots (1 + u_{n-i})]^{k-1}h, i = 1, 2, \cdots, n;$

where the numbers u_n are defined by the recursion formula

(6)
$$u_0 = 1/(k-1), \quad u_n = u_{n-1}/(1+u_{n-1})^k, \quad n = 1, 2, \cdots$$

2. **Proof.** The following formulas which will be needed in the proof follow easily from the proportion $B_1/(h-x_{1n})^{k-1} = B_0/h^{k-1}$:

(7)
$$V_{1n} = B_0 x_{1n} (h - x_{1n})^{k-1} / h^{k-1},$$

(8)
$$V' = B_0(h - x_{1n})^k / kh^{k-1},$$

where V' is the k-volume of the cone whose base is B_1 and whose altitude P_1Q has the length $h-x_{1n}$.

The proofs of the results for both problems are by induction with respect to n. The two problems are identical when n = 1, and by elementary calculus it follows readily from (7) together with $X_1 = V_{11}$ that $s_{11} = t_{11} = h/k$ and that $S_1 = T_1 = [(k-1)/k]^{k-1}V$. These results agree with (1), (2), (4), and (5) when n = 1.

In the first problem we assume that formulas (1) and (2) are correct for n-1 where $n \ge 2$. Let x_{1n} be chosen arbitrarily $(0 < x_{1n} < h)$ and, depending on the choice of x_{1n} , let $x_{2n}, x_{3n}, \dots, x_{nn}$ be chosen so as to maximize the combined k-volume of the remaining n-1 cylinders, namely:

$$X_{n-1}' = V_{2n} + V_{3n} + \cdots + V_{nn}.$$

By the induction hypothesis (see (1)) the maximum of X_{n-1}' is given by $S_{n-1}' = y_{n-1}^{k-1}V'$. We thus obtain, for each choice of x_{1n} , a maximum value of X_n , namely, $X_n = V_{1n} + S_{n-1}'$. Considering this X_n as a function of x_{1n} , namely (see (7) and (8)),

(9)
$$X_n = B_0 x_{1n} (h - x_{1n})^{k-1} / h^{k-1} + y_{n-1}^{k-1} B_0 (h - x_{1n})^k / k h^{k-1},$$

we see that X_n reaches its maximum value S_n when x_{1n} has the value

$$s_{1n} = \frac{1 - y_{n-1}^{k-1}}{k - y_{n-1}^{k-1}} h = \left(1 - \frac{k-1}{k - y_{n-1}^{k-1}}\right) h,$$

or by (3) we may write

(10)
$$s_{1n} = (1 - y_n)h_n$$

in agreement with (2). Substituting this value of s_{1n} for x_{1n} in (9) and using (3) we obtain (1).

It remains to show (2) for $i=2, 3, \cdots, n$. Note that S_{n-1}' represents the solution of the first problem for V'. Hence if the altitudes of

96

these n-1 cylinders are denoted by $s_{1,n-1}', s_{2,n-1}', \cdots, s_{n-1,n-1}'$, we have $s_{in} = s_{i-1,n-1}'$ for $i = 2, 3, \cdots, n$ and hence by the induction hypothesis (see (2)) $s_{in} = y_{n-1}y_{n-2} \cdots y_{n-i+2}(1-y_{n-i+1})(h-s_{1n})$. By (10) this establishes (2) for $i = 2, 3, \cdots, n$. This completes the proof of (1) and (2).

In the second problem, the case n=1 having been disposed of above, we now assume that (4) and (5) are correct for n-1, where $n \ge 2$. We shall choose x_{1n} arbitrarily but such that it is possible to inscribe n-1 cylinders of k-volume equal to V_{1n} in V'. By the induction hypothesis (see (4)) this is possible if and only if

(11)
$$(n-1)V_{1n} \leq k(n-1)u_{n-1}V'.$$

By virtue of (7) and (8) and the fact that $0 < x_{1n} < h$, the inequality (11) is equivalent to

(12)
$$0 < x_{1n} \leq u_{n-1}h/(1+u_{n-1}).$$

Our problem is therefore to maximize the quantity

(13)
$$X_n = nV_{1n} = nB_0 x_{1n} (h - x_{1n})^{k-1} / h^{k-1}$$

within the interval (12). But the function X_n increases over the interval $0 < x_{1n} \leq h/k$ and the right-hand end point of the interval (12) is less than h/k. (This follows easily from (6): the u_n form a decreasing sequence of positive numbers, hence $u_{n-1}/(1+u_{n-1}) < u_{n-1} \leq u_1 = (k-1)^{k-1}/k^k < 1/k$, $n=2, 3, \cdots$.) Therefore the function X_n assumes its maximum in the interval (12) at the right-hand end point, so that we obtain $t_{1n} = u_{n-1}h/(1+u_{n-1})$ and by (6) we may write

(14)
$$t_{1n} = u_n (1 + u_{n-1})^{k-1} h,$$

(15)
$$h - t_{1n} = h/(1 + u_{n-1}).$$

Substituting the values of t_{1n} and $h-t_{1n}$ from (14) and (15) for x_{1n} and $h-x_{1n}$ in (13) we obtain (4).

When x_{1n} assumes the value t_{1n} given in (14), the inequality (11) becomes an equation. Consequently, the n-1 cylinders $V_{2n}, V_{3n}, \dots, V_{nn}$ must be the solution of the second problem for V'. Hence if the altitudes of these cylinders are denoted by $t_{1,n-1'}$, $t_{2,n-1'}, \dots, t_{n-1,n-1'}$, we have $t_{in}=t_{i-1,n-1'}$ for $i=2, 3, \dots, n$ and hence, by the induction hypothesis (see (5)),

$$t_{in} = u_{n-1} [(1 + u_{n-2})(1 + u_{n-3}) \cdots (1 + u_{n-i})]^{k-1} (h - t_{1n}).$$

By (15) and (6) this establishes (5) for $i=2, 3, \cdots, n$. Since (14) agrees with (5) for i=1, this completes the proof.

1946]

3. Asymptotic formulas for S_n and T_n . The problem arises whether the quantities S_n and T_n , given by (1) and (4), respectively, can be expressed directly in terms of n. This seems possible only for the S_n in the case k = 2, that is, for the problem of maximizing the combined area of n rectangles inscribed in a triangle. Indeed in this case (3) becomes $y_n = 1/(2 - y_{n-1})$, which together with $y_0 = 0$ yields easily by induction that $y_n = n/(n+1)$. Hence from (2) and (1) we obtain $s_{in} = h/(n+1)$ for $i = 1, 2, \dots, n$ and $S_n = nV/(n+1)$ or

$$S_n/V = 1 - 1/(n+1).$$

Thus the problem arises to give at least an asymptotic formula for S_n/V when $k \ge 3$, as well as an asymptotic formula for T_n/V when $k \ge 2$.

We begin by establishing an asymptotic formula for the y_n (in the case $k \ge 3$). We put

$$(16) z_n = 1 - y_n$$

and obtain from (3)

(17)
$$z_0 = 1, \quad 1/z_n = F(z_{n-1}), \qquad n = 1, 2, \cdots,$$

where

(18)
$$F(z) = \frac{k - (1 - z)^{k-1}}{1 - (1 - z)^{k-1}}.$$

It is easily established from (3) by mathematical induction that $(k-1)/k \leq y_n < 1$ so that by (16)

(19)
$$0 < z_n \leq 1/k, \qquad n = 1, 2, \cdots.$$

We shall need the two following facts about F(z), defined in (18). In the first place,

$$F(z) = 1 + \frac{k-1}{C_{k-1,1}z - C_{k-1,2}z^2 + \cdots + (-1)^{k}z^{k-1}}$$

The terms in the denominator on the right are decreasing in absolute value when 0 < z < 2/(k-2), hence for such values we have F(z) > 1 + 1/z, so that in particular by (19), since 1/k < 2/(k-2),

(20)
$$F(z_j) > 1 + 1/z_j, \qquad j = 1, 2, \cdots.$$

Secondly, we conclude from (18) that F(z) is a regular function except for poles at the points z=0 and $z=1-\exp[2\pi i m/(k-1)]$ with $m=1, 2, \cdots, k-2$, so that F(z) admits of a Laurent expansion in the

region $0 < |z| < |1 - \exp[2\pi i/(k-1)]| = 2 \sin[\pi/(k-1)]$. This Laurent series is easily seen to be

(21)
$$F(z) = 1/z + k/2 + G(z), \quad G(z) = \sum_{m=1}^{\infty} a_m z^m,$$

where the power series G(z) converges for $|z| < 2 \sin[\pi/(k-1)]$. Since $1/k < 4/(k-1) \le 2 \sin[\pi/(k-1)]$ for $k \ge 3$, we conclude that G(z)/z is bounded for $|z| \le 1/k$. The latter fact together with (19) yields

$$(22) G(z_n) = O(z_n).3$$

From (17) and (20) we have $1/z_j > 1+1/z_{j-1}$, $j=2, 3, \cdots$. By adding these inequalities from j=2 to j=n, we obtain $1/z_n > n-1+1/z_1$; hence

From (17) and (21) we conclude that $1/z_j = 1/z_{j-1} + k/2 + G(z_{j-1})$, $j=2, 3, \cdots$. By adding these equations from j=2 to j=n, we obtain

(24)
$$1/z_n = 1/z_1 + k(n-1)/2 + \sum_{i=1}^{n-1} G(z_i).$$

Applying (22) and (23) to the $G(z_i)$ in (24), we thus obtain

$$\frac{1}{z_n} = \frac{kn}{2} + O(\log n) = \frac{kn}{2} \left[1 + O(n^{-1} \log n) \right],$$

$$z_n = \frac{2}{kn} \left[1 + O(n^{-1} \log n) \right] = \frac{2}{kn} + O(n^{-2} \log n).$$

Therefore by substituting this result in (1), we obtain the following asymptotic formula, valid for $k \ge 3$:

$$S_n/V = y_n^{k-1} = (1 - z_n)^{k-1} = [1 - 2/kn + O(n^{-2} \log n)]^{k-1},$$

$$S_n/V = 1 - 2(k - 1)/kn + O(n^{-2} \log n).$$

To establish an asymptotic formula for T_n/V when $k \ge 2$, we begin with an asymptotic formula for the u_n . We write (6) in the form $1/u_j = (1+u_{j-1})^k/u_{j-1}$ or

(25)
$$1/u_{j} = 1/u_{j-1} + k + C_{k,2}u_{j-1} + \sum_{m=3}^{k} C_{k,m}u_{j-1}^{m-1},$$

where the $\sum_{i=1}^{\infty}$ in (25) is to mean zero when k=2. By adding these equations from j=2 to j=n, we obtain

1946]

³ The notation $f(n) = O(\phi(n))$ is used here to mean that $|f(n)| < A\phi(n)$ for sufficiently large *n*, where *A* is independent of *n* but may depend on *k*. In particular we shall use the fact that $\sum_{i=1}^{n-1} (1/i)^m$ is of the form $\log n + O(1)$ when m = 1 and of the form O(1) when m > 1. Also if $\phi(n) \to 0$ the reciprocal value of $1 + O(\phi(n))$ is again of the form $1 + O(\phi(n))$.

(26)
$$1/u_n = 1/u_1 + k(n-1) + C_{k,2} \sum_{i=1}^{n-1} u_i + \sum_{m=3}^{k} C_{k,m} \sum_{i=1}^{n-1} u_i^{m-1}$$

for $n=2, 3, \cdots$. Hence since $u_i > 0$ for $i=1, 2, \cdots$, we have $1/u_n > k(n-1)$ and

$$u_n = O(1/n).$$

Applying (27) to the u_i on the right of (26), we have (see footnote 3)

(28)
$$1/u_n = kn + O(\log n) = kn[1 + O(n^{-1}\log n)],$$
$$u_n = (1/kn)[1 + O(n^{-1}\log n)] = 1/kn + O(n^{-2}\log n).$$

Using (28) in (26) we have, since $\sum_{i=1}^{n-1} i^{-2} \log i = O(1)$,

$$\frac{1}{u_n} = kn + 2^{-1}(k-1)\log n + O(1)$$
$$= kn \left[1 + \frac{k-1}{2k} \frac{\log n}{n} + O\left(\frac{1}{n}\right) \right],$$
$$u_n = \frac{1}{kn} \left[1 - \frac{k-1}{2k} \frac{\log n}{n} + O\left(\frac{1}{n}\right) \right],$$

Finally, substituting this result in (4), we obtain the following asymptotic formula:

$$T_n/V = 1 - \frac{k-1}{2k} \frac{\log n}{n} + O\left(\frac{1}{n}\right).$$

4. Table. In conclusion we append a brief table which indicates how involved the numbers s_{in} , S_n , t_{in} , T_n become, even for small values of k and n.

First problem			Second problem		
	k=2	<i>k</i> = 3		k = 2	<i>k</i> = 3
$\frac{s_{11}/h}{S_1/V}$	1/2 1/2	1/3 4/9	$\frac{t_{11}/h}{T_1/V}$	1/2 1/2	1/3 4/9
$ \frac{s_{12}/h}{s_{22}/h} $ $ \frac{s_{22}}{S_2/V} $	1/3 1/3 2/3	5/23 6/23 324/529	t_{12}/h t_{22}/h T_2/V	1/5 2/5 16/25	4/31 9/31 17496/29791

MICHIGAN STATE COLLEGE

100