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1. Introduction. Let K denote the region of the complex z-plane 
exterior to the cut along the real axis from — 1 to — oo. Let £ denote 
the class of functions F(z) with the following three properties: 

(a) F(z) is analytic over K; 

(1.1) (b) F ( 0 ) - 1; 
(c) R(F(z)) > 0 over K. 

The object of this paper is to prove that the class E is coextensive 
with the class of functions representable in the form 

(1 + s)1/2 

gi* 

1+ -
l + trx(l + z)1/2-+ 

(1.2) ( 1 -
l + fn(l + *)1'M i + ff,(i + zyi* + 

whereO<gp<l, — oo < r p < + oo, £ = 1, 2, 3, • • • , or asa terminating 
continued fraction of this form, in which the last gp which appears 
may be equal to unity. The continued fractions converge uniformly 
over every bounded closed region within K. That branch of (l+s)1 / 2 

is to be taken in K which equals 1 for 2 = 0. 
This result supplements [3 J.1 In fact, the continued fraction (1.2) 

is actually the continued fraction (3.6) of [3]. At that time we did 
not recognize that the latter can be put in the form (1.2), and we 
proved convergence only in the neighborhood of the origin. If 
rp = 0, p — lt 2, 3, • • • , the continued fraction (1.2) reduces to a fa
miliar form first considered by E. B. Van Vleck [2], and recently 
by the present writer [4] in connection with totally monotone se
quences. From one point of view, the result is a reformulation of a 
theorem of Schur [l ] on bounded analytic functions. 

Presented to the Society, September 17, 1945, under the title Analytic f unctions 
with positive real parts; received by the editors July 9, 1945. 

1 Numbers in brackets refer to the Bibliography at the end of the paper. 
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2. Preliminaries. It will be convenient to introduce, along with the 
class £, two other classes of analytic functions, U and V. The class U 
consists of all functions ƒ(w) which are analytic and have moduli not 
greater than unity for \w\ < 1 . The class V consists of all functions 
k(w) which are analytic and have positive real parts for |ze>| < 1 , and 
which have the value 1 for w=* 0. The transformation 

1 + wf(w) 

1 — wf(w) 

maps Uone-to-one upon V. We now map the domain \w\ <1 upon K 
by means of the transformation 

Aw (1 + z)1'* - 1 
(2.2) s = , w « -

(1 - wY (1 + s)1'2 + 1 
The class E then consists of the functions 

\ ( l + * ) l / 2 + l / ' 

where k(w) is in F. The correspondence set up in this way between 
E and V is one-to-one. 

To each function f(w) of the class U, Schur [l] makes correspond 
uniquely a finite or infinite sequence of constants ap such that, in 
case the sequence is finite and has n + 2 terms, 

(2.3) | « p | < l , p- 0, 1, 2, ••• f n t |an+i| = l, 

and, in case the sequence is infinite, 

(2.4) | « , | < 1 , * - 0 , 1, 2 , . . . . 

Conversely, each such sequence determines uniquely a function in the 
class U. The correspondence is set up in the following way. If f(w) is 
any function in U, the sequence {ap} is determined recurrently by 
means of the formulas 

1 oth — fk(w) 

(2.5) Mw)-f(w)t / H I W — : T T 4 ' «*-/*(0), 
w 1 — &kfk(w) 

J k = 0, 1, 2, . . . . 
Conversely, if a sequence {ap} satisfying (2.3) or (2.4) is given, we 
construct the linear transformations 

<xp — wt 
(2.6) s - sp(w; t) - ~ 

1 — &vv>t 
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of the /-plane into the 5-plane, the transformations depending upon 
the p a r a m e t e r s . These have the property that if \w\ < 1 then | / | ^ 1 
implies | $ | < 1 . The product of two or more of the transformations 
must have the same property. Thus, if 

SP(w; t) « SQSI • • • sp(w; /), 
then 

(2.7) \SP(w;t)\<l for | w | < l and | * | ^ 1 . 

To any finite sequence {ap} satisfying (2.3), there corresponds the 
function Sn(w; an+i) in the class U. To any infinite sequence {ap} 
satisfying (2.4) there corresponds the function ƒ(w) in U, defined for 
\w\ < 1 by 

(2.8) f(w) = lim SP(w;tp+1). 
p=oo 

Here h, fe, fe, • • • is any sequence of numbers with moduli not greater 
than unity; the limit exists uniformly for \w\ ^r for every positive 
constant r less than 1 ; the value of the limit does not depend upon the 
particular sequence {tp} which is chosen. This formulation differs 
from that of Schur only in the introduction of the arbitrary sequence 
{tp}, \tp\ 2§1, which, moreover, entails no essential modification in 
the proof. 

3. The main theorem. Let a0t ah a2t • • • , ap be numbers with 
moduli less than unity, and let 

(3.1) fk+i(w;t) = — — — — ~ , ƒ*(«>;/) = - ——* 
w 1 — &kfk(w; t) 1 — <kkwfh+\\w\ t) 

k = 0, 1, 2, • • • , p, 

where, in the notation introduced before, fo(w; t)—Sp(w; t), so that 
/P+I(W; f)=t. We introduce functions hk(w; t) by means of the equa
tions 

1 — 0kfk(w: t) 
(3.2) hk(w; t) - • 7 * ; / \ , k - 0, 1, 2, • • • ,p + 1, 

where the j3jb are numbers to be determined. If we substitute the val
ues of fk(w; t) and fk+i(w; t) obtained from (3.2) into (3.1) we ob
tain the following formula expressing hk — hkiw; t) in terms of 
hk+i~hk+i(w] t): 

(Pk—âk+Pk+iPkak—Pk+i)whk+i+(Pk+iPkak—pk^i—Wpk+wâk) 
hk^" ' '—• 

(Wâk+W2pk — Pk+l— Wpk+$kOLk) — (&k+ Wpk+Pk+1+Wpk+lPkCtk) Whk+1 
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We now determine the f3m so that the factor multiplying ft*+i in the 
numerator is zero. This will be true if 

(3.3) fik - £±±Z2t±, k - 1, 2, 3, • • • , p + 1, ft, - 1. 
1 — Pk-iock-i 

We note that |/3*| = 1 , jfe = 0, 1, 2, • • • , p+1. With these values of 
the j3w, the above formula may be written : 

, w x w A \l-«ifi*\* 
(3.4) hk(w: t) = — i —i « 

(1 - ajk) - (1 - atfih)w + (1 - f « A |«)w**+i(w; *) 
In particular, since j80 = 1» jfo(w; t) ~Sp(w; /), we have 

1 - Sp(w; t) (3.5) 
1 + wSp(w; t) 

| l -aojSol2 

""(1 - »*&) - (1 - a«0o)w + (1 - \a$<\*)whx(w\ t) 

On multiplying both members of (3.5) by 2w/(l-~w), adding 1 to 
both sides, and then taking reciprocals, we obtain 

1 + wSp(w; t) 

, x 1 - mSp(w; /) 
(3.6) 1 + w 

""" " 2w\ 1 ~ao/3o|2 

1 - t t i i z i j 
(1 - a*A) - (1 - <*o0o)«> + (1 - | a0fo|*)»Ai(w;i} 

Let 

(3.7) aifik = 1 - 2«*+i, ü - 0, 1, 2, • • • , p. 

Since |j8*| « 1 , |a*| < 1 , then 

(3.8) | uk - 1/2 | < 1/2, k - 1, 2, 3, • • • , J + 1. 

Thus, jR(wft) >0. We now put 

(3.9) gk - | «*|2ARM, r* - - I(uk)/R(uk). 

Making the substitutions (3.7) and (2.2) in (3.6) and (3.4), we obtain: 

1 + wSp(w; t) 

v 1 — wSp(w\ t) 
(3.10) _ PK (1 + z)w 

1 + l + in(l + *)wi + (i - g l)(d + *)1/a - i)*i(w; 0 
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and 

g*+i(U+*)1 /2+l) 
(3.11) hk(w\t)~ 6 ; 

i+^ -M( i+0) 1 / 2 +( i -g f c - h i ) ( ( i+«) 1 / 2 -D^H- i (^ ; )̂ 

&=1, 2, 3, • • • , p. 

By (3.8) and (3,9), the numbers g*, r* satisfy the inequalities 
(3.12) O < gk < 1, - oo < rh < + oof k « 1, 2, 3, • • • , / > + 1. 

Conversely, if g&, r* are any numbers satisfying (3.12), then numbers 
Uk satisfying (3.8) are uniquely determined by (3.9), inasmuch as the 
latter may be written #*=#* cos <£&, arg #&*=•— arc tan r*=--0jfe, 
Jfe «= 1, 2, 3, • • • , £ + 1 . Then, numbers a* with moduli less than unity 
are uniquely determined such that (3.3) and (3.7) hold. In fact, 

a0 = 1 — 2wi, ak = (1 — 2uk+i), 
ü\ü% • • • ük 

k = 1, 2, 3, • • • , ƒ>. 
We now suppose that {a*} is any sequence such that (2.4) holds. 

Then the preceding formulas hold for arbitrarily large values of p. By 
(3.2) with k~p + l we have, remembering that fP+i(w; t)~t: 

(3.13) hp+1(w; t) « * " ^ -

If we take t~tp+x~ l/jSp+i, then | /P+i| = 1 and Ap+i(ze>; /p+1)s=0. Then, 
by (3.10) and (3.11), 

1 + wSp(w; tp+i) 

1 — wSp(w; tp+i) 

is the (p+2)th approximant of the continued fraction (1.2). Hence, 
by (2.7) and (2.8), the continued fraction converges uniformly for 
| w\ ^r for every constant r less than 1, that is, for z in any bounded 
closed region within K, to the function 

1 + wf(w) Aw 
k(w) = = F(z), z = ; 

1 - wf(w) (1 - wY 
in the class E. If, on the other hand, (2.3) holds, then we readily 
verify that 

1 + wSn(w; an+1) 

1 ~ wSn{w; Oîn-fl) 

a function in the class E, is equal to the (w+2)th approximant of the 
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continued fraction (1.2) if 1 —an+iPn+i — 0} and is equal to the (w+3)th 
approximant, with gn+2~ 1, if 1 — an+A+i^O. 

Conversely, if we start with a function F(z) in the class £, we see 
immediately that there is determined uniquely a continued fraction 
(1.2) or a terminating continued fraction of this form, whose value 
is F(z). 

The proof of the theorem stated in the introduction is now com
plete. We remark that the condition (b) of (1.1) may be easily re
moved. If we do this, the result may then be stated as follows. 

THEOREM. If c>0, Q<gp<l, - co <ty- i< + oo, £ = l, 2, 3, • • • , 
then the continued fraction 

c(l+z)1'* 

RiZ 

l+tro(l+zy*+ — 
(3.14) i + f r 1 ( i + , ) i / « +

 ( 1 gl)g2Z 

1 . • M i M/2 i ( W O f t * 
1+ir2(l+z) 1 /2+ l+ir.(l+*)^+ 

converges uniformly over every bounded closed region in the domain K, 
and its value is a function F(z) which is analytic and has a positive real 
part throughout K. Conversely, if F(z) is any function with these proper-
ties t then there is a uniquely determined continued fraction of the form 
(3.14), or a terminating continued fraction of this form in which the last 
gp which appears may be unity, whose value is F(z). 
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