
ON THE ZEROS OF POLYNOMIALS WITH 
COMPLEX COEFFICIENTS1 

EVELYN FRANK 

1. Introduction. Problems in dynamics very frequently have physi
cally realizable solutions only if the determinantal equation of the 
system has all its roots in the negative half of the complex plane. It 
is therefore convenient to have a simple algorithm for testing whether 
this condition holds without actually computing the roots. Solutions 
to this problem have been considered by Cauchy [l],2 Routh [ó], and 
many others. Hurwitz [4] gave a method for polynomials with real 
coefficients of the form 

(1.1) P(z) « zn + aizn~l + azz"-* H + an 

According to his rule, all of the roots lie in the half-plane R(z) <0 if 
and only if all the determinants 

D* = 

0 1 , 

1, 

o, 
o, 

03 , 

02 , 

01» 

1, 

06, ' 

04, * 

03, • 

02, * 

* * , 02p-l 

* * , 02p-2 

' * , 02p-3 

* ' » 02p-4 
p = 1, 2, • — , n, 0y = 0, j > n, 

are positive. 
Recently, Wall [8] formulated and proved this theorem by means 

of continued fractions. We extend his method to polynomials with 
complex coefficients, 

Presented to the Society, September 15, 1945; received by the editors August 24 
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1 The author thanks Professor H. S. Wall for suggestions on the writing of this 
paper. 

The referee has kindly called my attention to a recent article by Herbert Bilharz, 
Bemerkung zu einem Satze von Hurwitz, Zeitschrift f tir Angewandte Mathematik und 
Mechanik vol. 24 (1944) pp. 77-82 (lithoprinted by Edwards Brothers, Inc., Ann 
Arbor, Mich., 1945). There is presented in Bilharz' article an algorithm for the com
putation of determinants of type Dp similar to that given here in §2. Also Theorem 
3.2 is essentially the same as the theorem stated and proved by Bilharz (p. 81), and 
Theorem 4.1 is equivalent to but approached differently from that stated by Bilharz 
without detailed proof. 

* Numbers in brackets refer to the bibliography at the end of the paper. 
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(1.2) P{z) = zn + aiz»-1 + a2s
n~2 + • • • + < * • • « * " # * + iff*, 

& = 1, 2, • • • , w. Therefore, by a rotation and translation, the results 
can be applied in an arbitrary half-plane. We form 

(1.3) Q(z) « p\Zn~x + iqzzn-2 + pzzn~z + iqAzn-"A + • • • 

and the /-fraction 

Q(z) 1 1 1 1 
(1.4) 

P(z) C\Z + fa + 1 + Gtf, + h + C$Z + kz + • • • + CnZ + kn 

where the cp are real and the kp are pure imaginary or zero. We find 
that all the zeros of P(z) have negative real parts if and only if the 
expansion (1.4) exists and the cp are positive (Theorem 3.1). More
over, if this expansion exists with k of the cp negative and (# — k) posi
tive, then k of the zeros of P{z) have positive real parts and (n —k) 
have negative real parts (Theorem 4.1). We find the proofs of these 
theorems carry over with no basic changes from those given by Wall 
[8] for the case of real polynomials, and at one step the proof of Theo
rem 3.1 is even simpler in the complex case. 

We give in §2 some convenient formulas for expanding a rational 
function into a continued fraction of the form (1.4). This leads to 
formulations of the preceding theorems by means of determinants 
analogous to the Hurwitz determinants. 

In §5, we give methods for modifying Theorem 4.1 in case the ex
pansion (1.4) fails to exist. 

In §6, we obtain formulas similar to those in [8] for finding bounds 
for the moduli of the zeros of (1.2). 

2. Expansion of a rational function into a /-fraction. We consider 
here the following problem : If 

( . / o = <*0Q3n + CXQiZ»-1 + • • • + «On, 

fi = ail**""1 + ai22
n~2 + • • • + «i» 

are two polynomials of degree n and w — 1 respectively, to determine 
conditions upon the coefficients a0o, • • • , <*<>», an, • • • , &in which are 
necessary and sufficient in order that 

(2.2) ' ' ' 
/o rxz + si + r2z + s2 + • • • + rnz + sn 

where the rp and sp are constants, the rp different from zero. This prob
lem is equivalent to the problem of determining polynomials fp of 
degree w—p, p — 2, 3, • • • , n — 1, which are connected with/o and fi 
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by the recurrence relations 

(2 «v fp-i - frp* + sp)fp + / p + i , p « 1, 2, • • • , n, 

/n+l = 0, ƒ« « «n n 5* 0, rp 5* 0. 

In other words, the expansion (2.2) exists if and only if the euclidean 
algorithm for the highest common factor of two polynomials, when 
applied to /o a n d / i , gives a system of the form (2.3). 

If we examine the long division process involved in the euclidean 
algorithm, we see that the numbers which contribute to the final re
sult are only those contained in the following table. 

«ii«o3~~«oo«i4 

«00 

« n 

0n = 
« n « o i - - «oo«i2 

«01 

«12 

#12 = 
« n « 0 2 ~ " «00«13 

«02 

«13 

#13 
«11 «11 «11 

«11012 — 011«12 «11^13 ~ 011«13 «11014 — 011«14 
/ o , \ ^22 = «23 = «24 = 

(2.4) an an «n 
«22«12 —«11«23 «22«13 —«11«24 «22«14*-«11«25 

022 = 023 = 024 = 
«22 «22 «22 

«22023 •—022«23 «22024 — 022«24 «22025 ~" 022«25 

a 3 3 = s auS- a35:= 
«22 «22 «22 

The expansion (2.2) exists if and only if the numbers a0o, «u, «22, 
• • • , ann are different from zero. When it exists, we have 

/r» r-\ « P - 1 . P - 1 HP,P . 4 -

(2.5) rp = ; *, * } p = 1, 2, • • • , n. 
&P$P ^P»P 

Example. Let f0=zi+(2+i)z2+(3+i)z+(2i+2), f1 = 2z*+iz+2. 
The table (2.4) in this case is 

1 2 + i 3 + i 2i + 2 

2 i 2 

2 + i/2 2 + i 2i + 2 

9/4 3»/2 

- i/3 2 

16/9 

3i/2 
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Therefore, 

147 

n - 1/2, r2 - 8/9 

^ 1 = 1 + i/4, s2 » - 4*/27, 

and the expansion (2.2) is 

M A » ! 
/o 0/2 + 1 + */4 + Sz/9 

rz - 81/64, 

53 = 27Î/32, 

4*/27 + 81^/64 + 27*/32 

We now formulate the condition for the existence of (2.2) in terms 
of certain determinants. 

THEOREM 2.1. The quotient j\/fo of two polynomials (2.1) can be ex
pressed in the form (2.2) if and only if 

(2.7) Dp?*0, # « 0 , 1 , • • • , » , 

wftere J0o=«oo cwd Di, D%, • • • , Dn are the first n principal minors of 
odd order {blocked off by lines) in the array 

«16 

«05 

«15 

«04 

«14 

«03 

(2.8) 

«n 

aoo 

0 

0 

0 

| «12 

«01 

« a 

aoo 

0 

«13 

«02 

«12 

«01 

«11 

«14 

«03 

«13 

«02 

«12 

«16 

«04 

«14 

«03 

«13 

0 0 «00 «01 «02 

where ctop—aip^O if p>n. 

PROOF. We suppose first that the expansion (2.2) exists with rp?**0, 
£=>1, 2, • • • , n, so that the numbers app,p~0,1, 2, • • • , of (2.4) are 
not zero. Consider the determinant Dp of order 2p — l, 2 ^p g n. If we 
subtract ct^/ctn times the (2fe —l)th row from the 2feth row, for 
* « 1 , 2, • • • , £ - 1 , we find with the aid of (2.4) that 

Dp = an 

011, 

«11, 

o, 
o, 
o, 

#12 

«12, 

011, 

«11, 

0, 

013, * * * 

«13, * * * 

012, ' * * 

«12, * • * 

011, * * * 
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where the new determinant is of order 2p —2. On subtracting jSn/an 
times the 2feth row from the (2& — l)th row, for & = 1, 2, • • • , p — 1, 
and making use of (2.4), we readily obtain 

(2.9) D f « n * - 1 2 n ( 1 ) 
P « 2, 3, 

where Df
 (fc) denotes the determinant Dr with both the subscripts of all 

its elements increased by k. From (2.9) we then find immediately that 

(2.10) n f < ( . P ( » ~ l ) / 2 2 2 2 
x/p = (— l ; Cinan • • • a*-i,j»_ia?*, ƒ> = 2 , 3 , 

Since <xpp?*0, £ = 0, 1, • • • , n, it follows from (2.10) that (2.7) holds. 
We suppose now, conversely, that (2.7) holds. Then, «oo^O, an5^0, 

since, by definition, J9o=«oo, Ui^au . Since cm^O, then (2.10) holds 
for p = 2, so that Z>2 = — Û ^ Û ^ ^ O , or o^s^O. This guarantees that 
(2.10) holds for £ = 3, so that Dz~ — au'o^ass^O, or a^s^O. On con
tinuing this argument, we finally arrive at ann^0, and the proof of 
Theorem 2.1 is complete. 

We observe that if fi—c0z
n-l+ciZn-2+ • • • +cn-i,fQ~zn, then the 

condition of Theorem 2.1 reduces to 

D„ -

CO, Cu 

Cl, £2, 

i Cp 

£p+l> c2p 

3*0, 

ƒ> « 0, 1, • • • , n - 1 (cp « 0 for £ > * - 1). 

This leads to the well known condition for a power series 

Co C\ C% + ̂  + 
to have a J-fraction expansion. We may obtain this expansion from 
formulas (2.4), (2.5) if we take aoo = l, O5OP = 0, £g£l; aip^Cp-i. 

Analogous considerations show that there exists a Stieltjes expan
sion [7] of the form3 

i2Al)t,± i JL 
/o d\Z + di + ^sz + + T ' ~ \du a Mo) * o, 

8 Expansions for rational functions of the form (2.2) and (2.11) find application in 
certain problems in electrical network theory (cf. [2,3]). 
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where dp9
£0f £ = 1, 2, 3, • • • , if and only if, in addition to condition 

(2.7), it is required that the principal minors of even order in the 
array (2.8) are different from zero up to and including the one of 
order 2w —2 or In, according as/0(0) =0 or/0(0) 5^0, respectively. The 
coefficients dp in (2.11) can be computed by forming the table 

« 0 «01 «02 * * ' 

«11 «12 «13 « • • 

« l i a o i — «00<*12 «11«02 — «00«13 «11^03 — «00«14 
*r>\ a 2 2 = «23 = «24 = * ' * 

(2.12) « a «H «11 
«22«12—'«11«23 «22«13 — # H « 2 4 «22^14 •^û;i i«26 

a 3 3 = s : ». «34 = «35 = *' * ' * 
«22 «22 «22 

Then 

(2.13) dp « "i-1'*-1, p = l, 2, 3, • • • . 

This may be shown if we apply Theorem 2.1 to the function 
zfi(z*)//*(**)• Since this is an odd function, its expansion (2.2) will 
have Sp = 0, £ = 1, 2, 3, • • • . From this, (2.11) can be obtained by 
simple transformations. 

3. Conditions for the zeros of a polynomial to lie in a half-plane. 
There is no loss in generality if we assume that the given half-plane 
is R(z) <0 since any half-plane can be reduced to this by a rotation 
and translation. 

THEOREM 3.1. Let P(z) be a polynomial with complex coefficients 
(1.2), and form Q(z) (1.3). The zeros of P(z) all lie in the half-plane 
R(z)<0 if and only if 

(3.1) = ; 
P(z) z + a0 + b1 + z + b2 + z + h + --- + z + bn 

where the ap are real and positive and the bp are pure imaginary or zero. 

PROOF. If the expansion (3.1) holds, one may regard the continued 
fraction as generated by the transformations 

«o a% 0n_i 
t ~ ; —; ; > Wi = y ' • • , W n - i = 

Z + 00 + h + Wi Z + b% + W2 Z + bn+ Wn 

and show exactly as in [8] that Q(z)/P(z) is irreducible, and 
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1 0(z) 1 I 1 
(3.2) ^ - i £ — for R(z) £ 0. 

I P(«) 2 I 2 
Hence P(z)^Q for jR(s)£0. 

Conversely, let P(z) be a given polynomial whose zeros are all in 
the half-plane R(z) <0. Let T(z) denote the polynomial obtained from 
P(z) by replacing its coefficients by their complex conjugates. The polv-
nomial Q(z) of (1.3) is then [P(s) + ? ( - * ) ] / 2 or [ P ( s ) - P ( - s ) ] / 2 
according as the degree n of P(s) is odd or even, respectively. We note 
that the set of zeros of P{z) is symmetrical to the set of zeros of 
7(—z), with respect to the imaginary axis. Hence the geometrical 
argument used in [8] can be applied to show that all the zeros of Q(z) 
lie on the axis of imaginaries, and that (3.2) holds. Since the zeros 
of P(z) are in the half-plane R(z) <0 while those of Q(z) are on the 
line R(z) = 0, it follows that Q(z)/P(z) is irreducible. 

By division we now get 

(3.3) V 

P(z) z + a0 + b1+ [C(z)/Q(z)] 

where ao is the negative of the sum of the real parts of the zeros of P(z) 
and is therefore positive, b\ is pure imaginary or zero, and C(z)/Q(z) is 
an irreducible rational fraction in which the denominator is of degree 
n — 1 and the degree of the numerator is less than n — 1. Just as in [8] 
it follows that R[C(z)/Q(z)] è 0 for R(z) ^ 0 , and hence that there is a 
partial fraction expansion of the form 

C(z) ?zi L p 

Q(z) „«i z + ixp 

where the xp are real and distinct, and the L p >0. Then 

- *?(- iz) _ g Lp 

Ç(— iz) p-i z - xp 

so that 

— iC(— iz) a,\ a>2 #n_i 

Q(— iz) z + bïi — z + fai -- • • * ~ z + bni 

where the ap are real and positive and the bv are pure imaginary or 
zero. On replacing z by iz and dividing both members by — it we get 

C(z) a\ a*t #n-i 

Q(Z) Z + h + Z + h + • • • + 2 + K 
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On substituting this expression into (3.3), we obtain (3.1), and the 
proof of the theorem is complete.4 If we put 

(3.5) 
00 

* . 

1 
: - f 

C\ 

br>Cv 

1 
CpCp+i 

# - l , 2 , - - - , » - l , f « l , 2 f - ,» , 

then (3.1) takes the form (1.4). The cp are evidently positive if and 
only if the ap are positive. 

The expansion (1.4) may be conveniently obtained by the method 
of §2. For example, if P(z)~z*+(2+i)z*+(3+i)z-\-(2i+2), then 
Q(z)*=2zi+iz+2, and Q(z)/P(z) is the fraction (2.6). Therefore, 
ci~ 1/2, c2 = 8/9, c3 = 81/64, so that the zeros of P(z) are all in the 
left half-plane. Here the zeros are actually — 1— i, ( —1—i 71/2)/2, 
( _ 1 + ; 7 i / 2 ) / 2 . 

From the formulas (2.5) and (2.10), we may formulate the condi
tion for the zeros of P(z) to lie in the half-plane R(z) <0 by means of 
certain determinants analogous to the Hurwitz determinants [4]. In 
fact, we conclude at once that the numbers cp of (1.4) are positive if 
and only if (-l)*t*-l»2Dp>0, £ = 0, 1, • • • , w, where Dp is the de
terminant of Theorem 2.1 formed with/o=P(2),/i==Q(z). By simple 
transformations of these determinants, one may formulate this result 
as the following theorem. 

THEOREM 3.2. The polynomial P{z) of Theorem 3.1 has all its zeros 
in the half-plane R(z)<0 if and only if the determinants 

(3.6) 

Ai = pu 

Ak « ( _ i)*t*-iu*Du 

X » 

Pit pzt pht * 

1» p2, Pit • * 

o, 
0, qzt q*t • 

0, qit q*t • 

0, 

* » P2k-lt 

' t pn~2t 

' t Pht 

• , q2k-2t 

• , <72*~3, 

• i qkt 

k - 2, 3, 

— q2l 

-Qit 

0, 

Pu 

1, 

o, 
• • • i 

- ? 4 , 

- ? 3 , 

Pit' 

p2t * 

n {pr 

* ' , — ff2*-J 

• • , — qvc-z 

' • • , — gfc-i 

• • , p2k~Z 

* * » />2&-4 

• ' * i Pk-l 

= qr = 0 for 

t 

r>n), 

4 An additional step is needed in the case of real polynomials (cf. SI), namely, 
to show that the bp » 0 . 
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are all positive. 

If the qP are zero, this reduces to the theorem of Hurwitz [4]. 

4. Determination of the number of zeros of P{z) in each of the 
half-planes R{z) <0, R(z) >0. We suppose that P{z) is a polynomial 
with complex coefficients of the form (1.2). We assume that (1.4) 
exists and that the cp?*0. We then have the following theorem. 

THEOREM 4.1. The polynomial (1.2) has k zeros with positive real 
parts and (n—k) zeros with negative real parts if, in the expansion (1.4), 
k of the coefficients cp are negative and the remaining (n — k) are positive. 

PROOF. Since the expansion (1.4) exists, Q{z)/P(z) is irreduci
ble. It follows that P(z) cannot have a zero on the imaginary axis. 
For, if P(*r)«0, r real, then (cf. §3) Q(ir) = [P(ir)±?(-ir)]/2 
*= [P(ir)±?(ff)]/2=0, which is impossible since Q(z)/P(z) is irre
ducible. Thus the zeros of P(z) have their real parts different from 
zero, so that, for i?(s)«0, we can write P(z)~reir$, where r>0 . If 
we consider P(z) as the product of the vectors from its zeros to the 
point z, then we see at once that, as z ranges along the axis of imagi-
naries from i • 00 to — i- 00, then 0 decreases by the integral amount 
A = 2V—P, where N and P are the numbers of zeros of P(z) with nega
tive and positive real parts, respectively. The same evidently holds if, 
instead of P(s)» we consider inP( —iz)—reiv9

$ and let z range along the 
real axis from — 00 to + 00. Now 

inP(~ iz) = (zn - qiz»-1 - p2z*-% + q&r*% + JM*~4 H ) 
(4.1) + iipxz»-1 - q2z

n~* - pzz
n~* + g43

n~4 H ) 

where 

(4.2) 

which is real when z is real. This may be seen as follows: 
The pth denominator of (1.4) can be written in the form 

Bx{z) - cxz + hi + 1, 
cxz + h + 1, - 1, 0, 0, • • • , 0 

1, c2z + k2, - 1, 0, • • • , 0 

Bp(z) - I 0, 1, c*z + kit - 1, • • • , 0 

cpz + kp 

V(z) 

U(z) 

+ i(piz" 
- U(z) + -

1 

C\z + ik\ 

- 1 _ 

— dz 

q&n 

1 

+ 

- 2 _ 

ik% -

• pzz
n' -8 + qtz»-4 

1 

~ cnz + 

+ 

ikn 
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P=*2f 3, • 

C1C2 

(4.3) 

• • , n. Since c%c% • • • cnP(z) **Bn(z)t we then have 

• • cnP(z) 

ciz + *i, - 1, 0, 0, • • • , 0 

1, c%z + kif — 1, 0, • • • , 0 

0, 1, czz+ k$f - 1, • • • , 0 

CnZ + K 

C2Z + kit "~~ 1> 0 , 

1, c%z + kz, — 1, 
0 

and 

(4.4) 

- Hn(z) + Gn(z) 

Gn(z) 

0 

0 

CnZ + K 

1 Bn(z) CiZ + ki + C2Z + k% + • • • + CnZ + kft 

If we replace z by — iz in (4.3) and (4.4) and make some simple 
transformations [5, p. 194], (4.4) becomes (4.2) and (4.3) becomes 
(4.1). 

From this point on, the proof runs almost exactly the same as in 
[8]. The number A is the net decrease in 

V(z) 
e — arctan 

T U(z) 

as z increases through real values from — 00 to + <». Using (4.2), we 
form the sequence/o^l, jfi~cnz+ikni •••,ƒ,», defined by the recur
rence formula fP+i~ (cn-pZ+ikn-pïfp—fp-u P~l,2, • • • , # — 1. These 
form a Sturm's sequence, and we find that A = w —2fe, where k is the 
number of negative terms in the sequence ci, £2, • • • 1 cn. Therefore, 
N~P=*n — 2k, N+P**n, so that P = fe, N—n — k, as was to be 
proved. 

By means of formulas (2.S) and (3.6), Theorem 4.1 can be formu
lated in terms of the numbers app in the first column of table (2.4), 
or in terms of the determinants A^ of (3.6). In this way the methods 
of Routh and Hurwitz, respectively, are extended tô polynomials with 
complex coefficients. 

The method of Theorem 4.1 applies, save in the exceptional case 
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where some determinant AP vanishes and the expansion (1.4) fails to 
exist. In the next section, we give simple methods for taking care of 
this exceptional case. 

5. The case where some Ap = 0. We assume Q{z)/P{z) is irreducible. 
This is no restriction since the common factor can be removed by the 
euclidean algorithm. We shall show that the method of §4 may be ex
tended to find the number of roots in each half-plane even if some 
Ap = 0. 

THEOREM 5.1. There exists a number 5 > 0 such that for all numbers rj 
in the interval —8<rj<Q, the expansion (1.4) exists for the quotient 
Q(z+rj)/P(z+ri). 

PROOF. Form the determinants Ap of (3.6) for the polynomial 

P(z + i?) == s* + (nCvrj + adz"~l 

+ W W + «i -A-i? + a2)z
n-2 + • • • + « * . 

Then one may readily verify that the Ap are polynomials in rj of de
gree p2, in which the coefficient of the highest power of rj is 

nPu 

1, 
o, 

nCz, 

np2i 

nClt 

w^ 5» 

w^4j * * 

nPzt * ' 

* i n(^2p— 1 

* » n^2p—2 

* , nC/2p—3 

r 
nSsp 1 

nCl, 

1, 
o, 

nCz, • • 

n^>2> * * 

n C l , • • 

* > rS^2p—3 

* » nS-'2p—4 

* » nt"2p—5 

. c , 
nv^ p—1 1 

These determinants are always positive, for they are the determinants 
(3.6) formed for the polynomial (2 + l ) n = stt+nCi2n"~1+nC,

2z
n"~2+ • • * 

+nCny which has its only zero in the half-plane R(z) < 0 . Then the Ap 

for (5.1) are polynomials in rj which are not identically zero. Hence 
there must exist a constant ô > 0 such that, for — S<77<0, none of 
the Ap can vanish, and thus the Cp^O since they are quotients of 
the Ap. 

Example. We shall apply this theorem to find the number of zeros 
in each half-plane for the polynomial P(z) = zz + (2+i)z2 + ( — 3/2+i)z 
+ ( — 5/2 — Si/2). Here A2 = 0 so that the expansion (1.4) cannot be 
formed. However, if we expand Q(z+rj)/P(z+r}) into a /-fraction and 
retain at each step only the powers of r} which dominate as rj approaches 
zero, we find that, when rj is near zero, d, c2, and Cz are positive, nega
tive, and positive, respectively. Therefore, P(z+rj) has two zeros with 
negative real parts and one zero with positive real part for all \r)\ 
sufficiently small. Hence P(z) must also have two zeros with negative 
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real parts and one zero with positive real part. Here the zeros are ac
tually ( - 1 ± ( l l ) 1 / 2 ) / 2 , - l - i . 

We now describe two methods for finding the number of roots in 
each half-plane, which are based on the fact that we may alter the 
coefficients of P(z) by a very small amount without displacing the 
zeros of P(z) more than a very small amount. Therefore, since we have 
assumed that P(z) has no zeros on the imaginary axis, the altered 
polynomial P'(z) will have the same number of zeros on each side of 
the imaginary axis as the original polynomial P(z). 

In the first method, we actually increase one or more of the coeffi
cients by a small positive amount €, and obtain the J-fraction expan
sion (1.4) for the altered polynomial. We then count the signs of the 
cp as before. The following example illustrates the method. 

Example. Let P (3 )=3 5 -3 s 4 -2Os 8 +6Os 2 -0 -~78 . We find that the 
expansion (1.4) does not exist for Q(z)/P(z). We therefore form P'(z) 
= 2 8 - 3 s 4 + ( - 2 0 + € ) s 3 + 6 0 2 2 - s - - 7 8 , Q ' ( s ) « 0 ( s ) « - 3 z 4 + 6 0 s 2 - 7 8 , 
and the /-fraction expansion (1.4) for Q'{z)/P,{z). In this expansion 
we find, for all e sufficiently small, c\, c2, c$ are negative and £4, £5 are 
positive, so that there are three roots of P'{z) and hence of P(z) with 
positive real parts and two with negative real parts. The zeros of 
P(z) are approximately - 1 . 0 , - 4 . 4 , +4 .7 , +1,86±.5*\ 

A second method consists in the formation of the continued fraction 
expansion for V(z)/U(z) by the euclidean algorithm, that is, we form 

, v F(*) 1 1 1 
(5.2) - l - l - , j<n, 

U(z) qi(z) + q2(z) + • • • + qfa) 
where the qp are certain uniquely determined polynomials. Let us 
imagine that we have formed a polynomial 

(5.3) P'(«) - 2» + a/2»-1 + a{z«~* + • • • + « « ' , 

whose coefficients differ by very small amounts from the coefficients 
of P(z)t and the corresponding expansion 

V'(z) 1 1 1 
(5.4) 

U'(z) C\z + ik\ — C2Z + ikï — • • • — cnz + ikn 

and compare this with (5.2). The method can best be explained by ex
amples. 

Examples. Consider again P(s )=2* — 3zA — 20zz+60z*—z — 78. Here 

(5 .3 , m » 
U(z) - z/3 + (2» + 20z)/9 + 27z/78 
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We form the Sturm's functions for P'(s),/o^l,/i—c%z, • • • , defined 
by the recurrence relation fv+i~cn-vz-fp-~fv-u p=*l, 2, • • • , where 
the e* are undetermined. We then compare (5.4) and (5.5), and re
quire that ci*= 27/78, c5« —1/3, andƒ*=* F(^). Therefore, ctftCi**\/9, 
-~czCi<*-27c4/78~>27c2/78**60/78. Since / § « tf(*)-w(27<vVW-l), 
we see that if we choose c% » — €, a small negative number, /6 and Z7(«) 
will differ by a very small amount. Then c2~ ( -29 ± (296+36/€)^2)/18, 
c4= — 20/9—C2 — 26/81c2, so that two of the c2, cZl c* have negative 
signs and one has a positive sign. These, together with the values of c% 
and c%, give three negative and two positive cv for P7(s), so that we 
find the same result as by the first method. 

For the polynomial P(z) **z*+(i-~5)z*~lQiz*+(l0+50i)z2-~l6z 
+ ( — 16i+80) we find by the same method that in the /-fraction ex
pansion of the form (5.4) for V'(z)/U'(z) three of the cp have negative 
signs and two have positive. Hence P'(z) and P(z) have three zeros 
in R(z) >0 and two zeros in R(z)<0. Here the roots are actually 
l+if — 1—*, 2+2i, —2 —2i, 5— i. 

Still another method, which, however, may not always be success
ful, is to replace z by X/z and consider the polynomial znP(\/z). 

6. Bounds for the moduli of the zeros of P(z). We extend the 
method in [8] to obtain bounds for the moduli. If we set 

1 1 
hi = ) h2 (cxz + ki + l)(c2z + k2) (c2z + £s)(*s* + h) 

1 
* n ~ l 

{Cn-iZ + kn-.i)(cnZ + kn) 

then (1.4) becomes 

Q(z) (ctz+fei + l)-1 hi h 
P{z) 1 + 1 + 1 + • 

&n-l 

• + 1 
Ifgi,g2, • • • ,^n~i are numbers such that 0 < g p < 1,^ = 1, 2, • • *,n — 1» 
then P(z)9*0 if z satisfies the inequalities \fa\ ggx, \h2\ é(l-"gi)g2, 
\h\ û(l~~g2)gz, • • • , \hn-i\ â(l-gn-2)gn^i. This sequence gives the 
bound | s | è£f where c is the largest of the numbers 

(6.1) 

i /i JM-ii i*ti I Y I M - I I |*«iv, * i»/^ 
"ô"l M" n~ v i P i T )' 
2 M Ci I 1 c81 Lv ci I ] ct\/ gi\eiCz\J / 

T ( - + — + ( - - — )+-T;—n—r )' 
2 M cjl I ct\ LM «i I I cjl/ gî( l-gi) I c2cs IJ / 
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(6.1) 
1 /I £»-l| 
2 VI C„_i I Cn 

+ [( 
#n—1 1 & 1\2 

1 

-ray 
1 g«-l(l-gn-2)| Cn-tfn |. 

In the example in §3, the numbers (6.1) are 3.76, 2.32 for gi, g2 = 1/2. 
The largest, 3.76, gives an upper bound for the moduli of the zeros. 
The moduli of all the zeros are, in fact, 1.41. By varying the gv, for 
instance, gi = 4/5, #2 = 3/4, we obtain a closer upper bound. The val
ues of (6.1) are then 3.38 and 2.87. 
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