INEQUALITIES CONNECTING SOLUTIONS OF CREMONA'S EQUATIONS

G. B. HUFF

1. Introduction. Let a complete and regular linear system $\Sigma_{p,d}$ of plane curves of *dimension d*, the *genus* of the general curve being p, be determined by its order x_0 , and its multiplicities x_1, \dots, x_p at a set of ρ general base points. $x = (x_0; x_1, \dots, x_p)$ is called the *characteristic* of $\Sigma_{p,d}$ and satisfies Cremona's equations:

(1)
$$\begin{aligned} x_0^2 - x_1^2 - x_2^2 - \cdots - x_{\rho}^2 &\equiv (xx) = d + p - 1, \\ 3x_0 - x_1 - x_2 - \cdots - x_{\rho} &\equiv (lx) = d - p + 1. \end{aligned}$$

On the other hand, an integer solution x of (1) may or may not determine a linear system. If an x does determine a $\sum_{p,d}$, it is said to be *proper*. In this definition is included the usual convention that $(0; -1, 0, \dots, 0)$ is a proper characteristic of the set of directions at a base point [1].¹

If a system $\Sigma_{p,d}$ of characteristic x is subjected to a Cremona transformation C with F-points at the base points of Σ , $\Sigma \rightarrow \Sigma'_{p,d}$ whose characteristic x' at the F-points of C^{-1} is given by:

(2)
$$L: \begin{array}{c} x_0' = (cx) \equiv c_0 x_0 - c_1 x_1 - c_2 x_2 - \cdots - c_\rho x_\rho, \\ x_i' = (f^i x) \equiv f_0^i x_0 - f_1^i x_1 - f_2^i x_2 - \cdots - f_\rho^i x_\rho, \\ i = 1, 2, \cdots, \rho. \end{array}$$

Here c is the characteristic of the homaloidal net of C^{-1} and the f^i are the characteristics of the *P*-curves of this net. Thus proper characteristics c of p=0, d=2 and proper characteristics f of p=d=0 play a central role in the theory and will be prominent in this article. The collection of all transformations L for a given ρ forms a group, G_{ρ} . G_{ρ} is generated by transformations L for which c is of type (2; 1110 \cdots 0), and for any $L \in G_{\rho}$ the forms (xx), (lx) and (xy) are invariant.

In this paper attention is restricted to characteristics of $x_0 > 0$, and $p \ge 0$ and $d \ge 0$. We shall designate this as *property* A and obtain inequalities implied by (1) and property A. The inequalities are interesting in themselves and lead to a criterion for distinguishing proper characteristics.

Presented to the Society, November 24, 1945; received by the editors November 8, 1945.

¹ Numbers in brackets refer to the references cited at the end of the paper.

2. Inequalities involving the characteristics of homaloidal nets.

THEOREM 1. If x has property A, then $2x_0 - x_1 - x_2 - x_3 \ge 0$. Moreover, the equals signs hold only for p = d = 0; x = (1; 110), (1; 101) or (1; 011).

Since $(xx) = d + p - 1 \ge -1$, it may be shown that $x_0 \ge x_i$, $i = 1, \dots, p$. Indeed, set $x_i = x_0 - a$ in $(xx) \ge -1$:

$$2ax_0 - a^2 - x_1^2 - \cdots - x_{i-1}^2 - x_{i+1}^2 - \cdots - x_{\rho}^2 \ge -1,$$

or

$$a(2x_0-a)\geq -1.$$

Since x_0 is a positive integer, a may not be negative. Thus the integers a_1 , a_2 , a_3 in $x_1 = x_0 - a_1$, $x_2 = x_0 - a_2$, $x_3 = x_0 - a_3$ are non-negative. Substituting these in the quadratic relation yields:

$$-2x_0^2+2x_0(a_1+a_2+a_3)-a_1^2-a_2^2-a_3^2-x_4^2-\cdots-x_{\rho}^2\geq -1.$$

Now $a_1, a_2, a_3, x_4, \cdots, x_{\rho}$ cannot all vanish, for this would imply that $-2x_0^2 \ge -1$. Thus:

 $2x_0(a_1 + a_2 + a_3) - 2x_0^2 > -1$

or

$$a_1 + a_2 + a_3 - x_0 > -1/2x_0.$$

It follows that $a_1+a_2+a_3-x_0 \ge 0$ and thus that

$$2x_0 - (x_0 - a_1) - (x_0 - a_2) - (x_0 - a_3) \ge 0.$$

If x is a characteristic with property A and $2x_0-x_1-x_2-x_3=0$, then the image of x under

$$x_0' = 2x_0 - x_1 - x_2 - x_3,$$

A₁₂₃: $x_i' = x_i + (x_0 - x_1 - x_2 - x_3), \quad i = 1, 2, 3,$
 $x_j' = x_j, \quad j = 4, \cdots, p,$

has $x_0' = 0$ and satisfies the same Cremona equations. Thus

$$-x_1'^2 - x_2'^2 - \cdots - x_p'^2 = d + p - 1,$$

- $x_1' - x_2' - \cdots - x_p' = d - p + 1.$

This is possible only for d, p=0, 0; 1, 0 and 0, 1. A canvass of the cases reveals that d, p=0, 0 and $x'=(0; -1 \ 0 \ \cdots \ 0)$ comprise all possibilities. Thus x=(1; 110), (1; 101), (1; 011) are the only values of x for which the equals sign holds.

288

Since (2; $1110 \cdots 0$) is the characteristic of a homaloidal net of conics, the form of the inequality clearly suggests the following generalization:

THEOREM 2. If x has property A and c is the characteristic of a homaloidal net, then $(cx) \ge 0$. Moreover, the equals sign holds only for the characteristics of the principal curves of the homaloidal net.

Consider first characteristics x of p+d>0. In this case, Theorem 1 asserts that any x' obtained from x under A_{ijk} has $x'_0>0$. Since c is the characteristic of a homaloidal net, c is the image of $(1; 0, 0, \dots, 0)$ under a sequence of transformations of the form A_{ijk} . Let $x \rightarrow x'$ under the sequence that sends $c \rightarrow c' = (1; 0, \dots, 0)$. Since $x'_0>0$, it follows that (c'x')>0. Thus (cx)>0, for this bilinear relation is invariant under G_{ρ} .

If p=0, d=0, a modification of the argument is required since in this case x_0' might vanish under some A_{ijk} . But in this case x is by Theorem 1 a proper characteristic. Thus an improper characteristic xof p=d=0 always goes into a characteristic of $x_0' > 0$ under A_{ijk} and the argument above applies. For proper characteristics x of p=d=0, it is clear that $(cx) \ge 0$, else the rational curve would have too many intersections with the homaloidal net. If (cx) = 0, x is the characteristic of a rational curve meeting the curves of the net only at the base points, and hence is the characteristic of a principal curve of the net.

3. Inequalities involving characteristics of rational curves.

LEMMA. If x has property A and x^* denotes the same characteristic with x_p deleted, then x^* has property A.

A simple computation yields for p', d' of x^* :

 $d' = d + x_{\rho}(x_{\rho} + 1)/2, \qquad p' - 1 = p - 1 + x_{\rho}(x_{\rho} - 1)/2.$

Since $x_{\rho}(x_{\rho}+1)/2$ and $x_{\rho}(x_{\rho}-1)/2$ are non-negative functions of the integer x_{ρ} , the conclusion follows.

THEOREM 3. If x has property A and p+d>0, and f is a proper characteristic of p=d=0 and (fx)<0, then $x_0>f_0$.

Since f is proper, there is [2] an $L \in G_{\rho}$ such that $\overline{f} = L(f) = (0; 0, \dots, 0, -1)$. $\overline{x} = L(x)$ has $\overline{x}_0 > 0$ by Theorem 2 and $(fx) = (\overline{f}\overline{x}) < 0$. But $(\overline{f}\overline{x}) = \overline{x}_{\rho} < 0$. Thus \overline{x} may be written in the form

$$\bar{x} = \bar{x}^* + k\bar{f},$$

where k is a positive integer, and \bar{x}^* is \bar{x} with \bar{x}_{ρ} deleted. Now consider the image of \bar{x} under L^{-1} .

1946]

$$L^{-1}(\bar{x}) = L^{-1}(\bar{x}^* + k\bar{f}) = L^{-1}(\bar{x}^*) + kL^{-1}(\bar{f}),$$

or

$$x = L^{-1}(\bar{x}^*) + kf.$$

Now \bar{x}^* has $\bar{x}_0^* > 0$, and p' + d' > 0 by the lemma. Hence by Theorem 2 its image $(\bar{x}^*)'$ has $(\bar{x}_0^*)' > 0$. Since

$$x_0 = (\bar{x}_0^*)' + k f_0,$$

it follows that $x_0 > f_0$.

THEOREM 4. If x has property A and p+d>0, and f is a proper charcharacteristic such that p=d=0 and $x_0 \leq f_0$, then $(fx) \geq 0$.

Theorem 4 follows from Theorem 3 by formal reasoning and offers a generalization of a property of proper characteristics. For if x is a proper characteristic, $(fx) \ge 0$ follows from the fact that the curves of the system may not have more than f_0x_0 intersections with the irreducible rational curve associated with f. The significance of the theorem is that all characteristics $f_0 \ge x_0 > 0$, $p \ge 0$, $d \ge 0$, p+d>0 must enjoy this same property.

There are examples of characteristics with property A and p+d>0which even have $x_i>0$, $i=1, \dots, \rho$, for which there is an f of $f_0 < x_0$ such that (fx) < 0. An early example is $(5; 3^21^6)$ and $(1; 1^{20^6})$.

4. Applications.

THEOREM 5. Let x be a characteristic of property A and p+d>0, such that $(fx) \ge 0$ for all proper f of p=d=0 and $f_0 < x_0$; then $x_i \ge 0$ and, moreover, if x' is the image of x under any $L \in G_p$, then $x_0' > 0$ and $x_i' \ge 0$ for $i=1, \dots, p$.

Since $\overline{f} = (0; 0^{p-1}-1)$ is a proper f of $f_0 = 0 < x_0$ and $(\overline{f}x) \ge 0$, it follows that $x_i \ge 0$. By Theorem 4, $(fx) \ge 0$ for all proper f, p=d=0 of $f_0 \ge x_0$. Then $(fx) \ge 0$ for all proper f. These characteristics f are simply permuted by any $L \in G_p$. Thus if x' = L(x), it follows that $(fx') \ge 0$ for all proper f. Since these include $(0; 0^{p-1}-1)$, it follows as before that $x_i' \ge 0$. Theorem 2 asserts that $x_0' > 0$.

The following important result is now easily established:

THEOREM 6. Let c be a solution of (1) for p = 0, d = 2, $c_0 > 0$ such that $(fc) \ge 0$ for all proper f of p = d = 0 and $f_0 < c_0$, then c is the characteristic of a homaloidal net.

As before, $c_i \ge 0$ and it is known [3] that in such a case $c_0 - c_1 - c_2 - c_3 < 0$ if c_1, c_2, c_3 are the greatest of the numbers c_i and $c_0 > 1$. Thus

[April

290

under A₁₂₃, $c \rightarrow c'$ of $c'_0 < c_0$ and by Theorem 5, $c'_i \ge 0$, $i=1, 2, \cdots, \rho$. Thus this reduction may be continued until $c'_0 = 1$, in which case $c'' = (1; 0, \cdots, 0)$. Under the given hypotheses, c is then the image of $(1; 0, \cdots, 0)$ under some $L \in G_{\rho}$ and must be proper.

This result has been conjectured much earlier and indeed was proved [4] by the writer, but the proof given on that occasion was quite elusive and unsatisfactory. Fragmentary results indicate that Theorem 5 has other important applications to cases where a generalization of Noether's inequality is possible. It would be desirable to avoid the restriction p+d>0. It is possible that Theorem 5 might still be true if one removed this restriction and added at the end of the theorem "or else x' is of the type $(0; 0, \dots, 0, -1)$."

References

1. A. B. Coble, Cremona's diophantine equations, Amer. J. Math. vol. 56 (1934) pp. 459-461. See especially p. 461.

2. J. L. Coolidge, Algebraic plane curves, 1931, p. 399.

3. Max Noether, Ueber Flachen welche Schaaren rationaler Curven besitzen, Math. Ann. vol. 3 (1871) p. 167.

4. G. B. Huff, A sufficient condition that a C-characteristic be geometric, Proc. Nat. Acad. Sci. U.S.A. vol. 29 (1943) p. 198.

UNIVERSITY OF TEXAS

1946]