A NOTE ON THE RIEMANN ZETA-FUNCTION

FU TRAING WANG

Let $\rho_{\nu}=\beta_{\nu}+i \gamma_{\nu}$ be the zeros of the Riemann zeta-function $\zeta(1 / 2+z)$ whose real part $\beta_{\nu} \geqq 0$. Then we have the following formula which is an improvement on Paley-Wiener's [1, p. 78] ${ }^{1}$

$$
\begin{aligned}
& \int_{1}^{T} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}} d t=2 \pi \sum_{\nu=1}^{\infty} \frac{\beta_{\nu}}{\left|\rho_{\nu}\right|^{2}} \\
&+\int_{0}^{\pi / 2} R\left\{e^{-i \theta} \log \zeta\left(1 / 2+e^{i \theta}\right)\right\} d \theta+O\left(\frac{\log T}{T}\right)
\end{aligned}
$$

In order to prove this formula let $\rho_{\nu}(\nu=1,2, \cdots, n)$ be the n zeros of $\zeta(1 / 2+z)$ for which $0<\gamma_{\nu}<T$ and $0 \leqq \beta_{\nu}<1 / 2$. We require the following lemma:

Lemma. Let K be the unit semicircle with center $z=0$ lying in the right half-plane $R(z)>0$ and let C be the broken line consisting of three segments $L_{1}(0 \leqq x \leqq T, y=T), L_{2}(0 \leqq x \leqq T, y=-T)$ and $L_{3}(x=T$, $-T \leqq y \leqq T$). Then

$$
\begin{align*}
& \frac{1}{\pi} \int_{1}^{T} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}} d t=2 \sum_{\nu=1}^{n} \frac{\beta_{\nu}}{\left|\rho_{\nu}\right|^{2}} \tag{1}\\
& \quad+\frac{1}{2 \pi i} \int_{K} \frac{\log \zeta(1 / 2+z)}{z^{2}} d z-\frac{1}{2 \pi i} \int_{C} \frac{\log \zeta(1 / 2+z)}{z^{2}} d z
\end{align*}
$$

This is a form of Carleman's theorem which can be proved by a method of proof analogous to that of Littlewood's theorem (Titchmarsh [3, pp. 130-134]).

Let Γ be a contour describing C, K and the corresponding part of the imaginary axis, and let ρ_{ν} be a point interior to Γ, and $\log \left(z-\rho_{\nu}\right)$ be taken as its principal value. We write C_{1} as a contour describing Γ in positive direction to the point $i \gamma_{\nu}$, then along the segment $y=\gamma_{\nu}$, $0<x<\beta_{\nu}-r$, and describing a small circle with center $z=\rho_{\nu}$, radius r, then going back along the negative side of this segment to $i \gamma_{\nu}$, and then along Γ to the starting point.

By Cauchy's theorem we get

$$
\int_{C_{1}} \frac{\log \left(z-\rho_{v}\right)}{z^{2}} d z=0
$$

[^0]Hence

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{\log \left(z-\rho_{\nu}\right)}{z^{2}} d z=-\int_{0}^{\beta_{\nu}} \frac{d x}{\left(x+i \gamma_{\nu}\right)^{2}}
$$

where the integral round the small circle with center $z=\rho_{\nu}$, radius r, tends to zero as $r \rightarrow 0$. This formula is also true for $\beta_{\nu}=0$.

Put $\zeta(1 / 2+z)=\phi(z) \prod_{v=1}^{n}\left(z-\rho_{v}\right) \prod_{v=1}^{n}\left(z-\bar{\rho}_{\nu}\right)$ where $\phi(z)$ is regular and has no zero in and on Γ. Then we get

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} \frac{\log \zeta(1 / 2+z)}{z^{2}} d z & =\sum_{\nu=1}^{n}\left(\frac{1}{\rho_{\nu}}-\frac{1}{i \gamma_{\nu}}\right)+\sum_{\nu=1}^{n}\left(\frac{1}{\bar{\rho}_{\nu}}+\frac{1}{i \gamma_{\nu}}\right) \\
& =2 \sum_{\nu=1}^{n} \frac{\beta_{\nu}}{\left|\rho_{\nu}\right|^{2}}
\end{aligned}
$$

From this the lemma follows.
Now we have

$$
\begin{equation*}
\int_{C} \frac{\log \zeta(1 / 2+z)}{z^{2}} d z=-\int_{L_{1}}+\int_{L_{2}}+\int_{L_{3}} \tag{2}
\end{equation*}
$$

On account of

$$
\log \zeta(1 / 2+x+i T)=O(1) \quad \text { for } x \geqq 1
$$

we have

$$
\begin{equation*}
\int_{L_{1}}=\int_{0}^{1} \frac{\log \zeta(1 / 2+x+i T)}{(x+i T)^{2}} d x+O\left(\frac{1}{T}\right) \tag{3}
\end{equation*}
$$

Since (Titchmarsh [2, p. 5])

$$
\arg \zeta(1 / 2+x+i T)=O(\log T) \quad \text { for } 0 \leqq x \leqq 1
$$

and (Titchmarsh [2, p. 59])
$\log |\zeta(1 / 2+x+i T)|$

$$
=\frac{1}{2} \sum_{|\gamma-T|<1} \log \left\{(x-\beta)^{2}+(T-\gamma)^{2}\right\}+O(\log T)
$$

then

$$
\begin{equation*}
\int_{0}^{1} \frac{\log \zeta(1 / 2+x+i T)}{(x+i T)^{2}} d x=O\left(\frac{\log T}{T^{2}}\right) \tag{4}
\end{equation*}
$$

From (3) and (4) we get

$$
\begin{equation*}
\int_{L_{1}}=O\left(\frac{\log T}{T}\right) \tag{5}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\int_{L_{2}}=O\left(\frac{\log T}{T}\right) \tag{6}
\end{equation*}
$$

Since $\log \zeta(1 / 2+T+i y)=O\left(2^{-T}\right)$, we get

$$
\begin{equation*}
\int_{L_{3}}=O\left(T 2^{-T}\right) \tag{7}
\end{equation*}
$$

By (1), (2), (5), (6) and (7) we have

$$
\begin{align*}
\int_{1}^{T} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}} & d t=2 \pi \sum_{\nu=1}^{n} \frac{\beta_{\nu}}{\left|\rho_{\nu}\right|^{2}} \tag{8}\\
+ & \frac{1}{2 i} \int_{K} \frac{\log \zeta(1 / 2+z)}{z^{2}} d z+O\left(\frac{\log T}{T}\right) .
\end{align*}
$$

But (Ingham [4, p. 70])

$$
\begin{equation*}
\sum_{\nu=n+1}^{\infty} \frac{\beta_{\nu}}{\left|\rho_{\nu}\right|^{2}}=O\left(\sum_{\gamma>T} \frac{1}{\gamma^{2}}\right)=O\left(\frac{\log T}{T}\right) \tag{9}
\end{equation*}
$$

The formula follows from (8) and (9).
Finally, if we make $T \rightarrow \infty$ then

$$
\int_{1}^{\infty} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}} d t=\int_{0}^{\pi / 2} R\left\{e^{-i \theta} \log \zeta\left(1 / 2+e^{i \theta}\right)\right\} d \theta
$$

gives a necessary and sufficient condition for the truth of the Riemann hypothesis.

References

1. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain.

Amer. Math. Soc. Colloquium Publications, vol. 19, New York, 1934.
2. E. C. Titchmarsh, The zeta-function of Riemann, Cambridge, 1930.
3. - The theory of functions, Oxford, 1932.
4. A. E. Ingham, The distribution of prime numbers, Cambridge, 1932.

National University of Chekiang

[^0]: Received by the editors December 15, 1943, and, in revised form, June 12, 1945.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

