NOTE ON A THEOREM OF MURRAY

GEORGE W. MACKEY

1. Introduction. In a recent paper ${ }^{1}[1]^{2}$ Murray has shown that in any reflexive separable Banach space \mathfrak{B} every closed subspace \mathfrak{M} admits what he calls a quasi-complement, that is, a second closed subspace \mathfrak{N} such that $\mathfrak{M} \cap \mathfrak{N}=0$ and such that $\mathfrak{M}+\mathfrak{N}$, the smallest subspace containing both \mathfrak{M} and \mathfrak{M}, is dense in \mathfrak{B}. It is the purpose of this note to give a simpler proof of the following somewhat more general theorem.

Theorem. Let \mathfrak{B} be a separable normed linear space (not necessarily reflexive or even complete) and let \mathfrak{M} be a closed subspace of \mathfrak{B}. Then there exists a second closed subspace \mathfrak{n} such that $\mathfrak{M \cap} \mathfrak{n}=0$ and $\mathfrak{M + \mathfrak { N }}$ is dense in \mathfrak{B}.

In proving this theorem it is convenient to make use of the notion of closed subspace of a linear system discussed at length in Chapter III of [2]. We repeat the necessary definitions here. A linear system X_{L} is an abstract linear space X together with a linear subspace L of the space X^{*} of all linear ${ }^{3}$ functionals defined on X. If $l(x)=0$ for all l in L implies that $x=0$ (that is, if L is total) we say that X_{L} is a regular linear system. If M is a subspace of $X[L]$ we denote by M^{\prime} the set of all l in $L[x$ in $X]$ such that $l(x)=0$ for all x in X [l in L]. It is clear that $M \subseteq N$ implies $N^{\prime} \subseteq M^{\prime}$ and that $M^{\prime \prime} \supseteq M$. Since $M^{\prime \prime \prime}=\left(M^{\prime \prime}\right)^{\prime} \subseteq M^{\prime}$ and since $M^{\prime \prime \prime}=\left(M^{\prime}\right)^{\prime \prime} \supseteq M^{\prime}$ it follows that $M^{\prime}=M^{\prime \prime \prime}$ and hence that $M=M^{\prime \prime}$ if and only if M is of the form N^{\prime}. A subspace having either and hence both of these properties is said to be closed. We observe that the operation ' sets up a one-to-one inclusion inverting correspondence between the closed subspaces of X and L respectively.
2. Two lemmas. The proof of the theorem is based essentially on the following lemma.

Lemma 1. Let X_{L} be a regular linear system such that both X and L are $\boldsymbol{\aleph}_{0}$ dimensional, that is, have $\boldsymbol{\aleph}_{0}$ independent generators. Then if M

[^0]is any closed subspace of X_{L} there exists a second closed subspace N of X_{L} such that $M+N=X$ and $M^{\prime}+N^{\prime}=L$.

The proof of Lemma 1 is an easy consequence of a second lemma which is proved in its present form on page 171 of [2] and in other forms elsewhere but which we prove again here for completeness.

Lemma 2. Let X_{L} be as in Lemma 1. Then there exist sequences of elements x_{1}, x_{2}, \cdots and l_{1}, l_{2}, \cdots of X and L respectively such that $x_{1}+x_{2}+\cdots=X, l_{1}+l_{2}+\cdots=L$ and $l_{i}\left(x_{j}\right)=\delta_{i}{ }^{i}$ for $i, j=1,2, \cdots$.

Proof. Let y_{1}, y_{2}, \cdots and m_{1}, m_{2}, \cdots generate X and L respectively. We define x_{1}, x_{2}, \cdots and l_{1}, l_{2}, \cdots by induction. Let $l_{1}=m_{1}$ and let $x_{1}=y_{n_{1}} / m_{1}\left(y_{n_{1}}\right)$ where n_{1} is the first integer such that $m_{1}\left(y_{n_{1}}\right) \neq 0$. Suppose that $x_{1}, x_{2}, \cdots, x_{k}$ and $l_{1}, l_{2}, \cdots, l_{k}$ have been defined. If k is odd let n_{0} be the first integer such that $y_{n_{0}} \in x_{1}+x_{2}+\cdots+x_{k}$ and let $x_{k+1}=y_{n_{0}}-\left(l_{k}\left(y_{n_{0}}\right) x_{k}+\cdots+l_{1}\left(y_{n_{0}}\right) x_{1}\right)$. Then let \bar{n} be the first integer such that $m_{n}\left(x_{k+1}\right) \neq 0$ and let $l_{k+1}=\left(m_{\tilde{n}}-\left(m_{\tilde{n}}\left(x_{k}\right) l_{k}+\cdots+m_{\tilde{n}}\left(x_{1}\right) l_{1}\right)\right) / m_{n}\left(x_{k+1}\right)$. If k is even let n_{0} be the first integer such that $m_{n_{0}} \notin l_{1}+l_{2} \dot{+} \cdots+l_{k}$ and let l_{k+1} $=m_{n_{0}}-\left(m_{n_{0}}\left(x_{k}\right) l_{k}+\cdots+m_{n_{0}}\left(x_{1}\right) l_{1}\right)$. Then let \tilde{n} be the first integer such that $l_{k+1}\left(y_{n}\right) \neq 0$ and let $x_{k+1}=\left(y_{n}-\left(l_{k}\left(y_{n}\right) x_{k}+\cdots\right.\right.$ $\left.\left.+l_{1}\left(y_{n}\right) x_{1}\right)\right) / l_{k+1}\left(y_{n}\right)$. It follows at once by induction that $l_{i}\left(x_{j}\right)=\delta_{i}{ }^{j}$ for $i, j=1,2, \cdots$ and it is clear that $X=x_{1}+x_{2}+\cdots$ and $L=l_{1}+l_{2}+\cdots$.

Proof of Lemma 1. For definiteness we shall assume that M and M^{\prime} are infinite-dimensional. The only difference in the contrary case is that certain infinite sequences must be replaced by finite ones. That Lemma 2 is true when X and L are finite-dimensional is obvious. Applying Lemma 2 to M and the linear functionals on M defined by the members of L we may infer the existence of sequences of elements $x_{1}, x_{2}, x_{3}, \cdots$ and $m_{1}, m_{2}, m_{3}, \cdots$ of M and L respectively such that $x_{1}+x_{2}+\cdots=M, M^{\prime}+m_{1}+m_{2}+\cdots=L$ and $m_{i}\left(x_{j}\right)=\delta_{i}{ }^{i}$ for $i, j=1,2, \cdots$ Similarly by applying Lemma 2 to M^{\prime} and the linear functionals on M^{\prime} defined by members of X and remembering that $M^{\prime \prime}=M$ we may infer the existence of sequences of elements $f_{1}, f_{2}, f_{3}, \cdots$ and $z_{1}, z_{2}, z_{3}, \cdots$ of M^{\prime} and X respectively such that $f_{1}+f_{2} \dot{+} \cdots=M^{\prime}, M \dot{+} z_{1}+z_{2} \dot{+} \cdots=X$ and $f_{i}\left(z_{j}\right)=\delta_{i}{ }^{i}$ for $i, j=1$, $2, \cdots$ Now for each i and $j=1,2, \cdots$ let

$$
\begin{aligned}
y_{j} & =z_{j}-\left(m_{1}\left(z_{j}\right) x_{1}+m_{2}\left(z_{j}\right) x_{2}+\cdots+m_{j}\left(z_{j}\right) x_{j}\right) \\
l_{i} & =m_{i}-\left(m_{i}\left(z_{1}\right) f_{1}+m_{i}\left(z_{2}\right) f_{2}+\cdots+m_{i}\left(z_{i-1}\right) f_{i-1}\right),
\end{aligned}
$$

where f_{0} and z_{0} are to be taken as zero. Then keeping in mind the fact
that $f_{i}\left(z_{j}\right)=m_{i}\left(x_{j}\right)=\delta_{i}{ }^{j}$ and $f_{i}\left(x_{j}\right)=0$ for $i, j=1,2, \cdots$ it is easy to verify that $l_{i}\left(y_{j}\right)=0$ and $f_{i}\left(y_{j}\right)=l_{i}\left(x_{j}\right)=\delta_{i}{ }^{i}$. The statement of the lemma now follows at once on setting $N=y_{1}+y_{2}+\cdots$. In fact since $x_{1}+x_{2}+\cdots+y_{1}+y_{2}+\cdots=x_{1}+x_{2}+\cdots+z_{1}+z_{2}+\cdots=M+z_{1}$ $+z_{2}+\cdots=X$ and $l_{1}+l_{2}+\cdots+f_{1}+f_{2} \dot{+} \cdots=l_{1}+l_{2}+\cdots+m_{1}$ $+m_{2}+\cdots=M^{\prime}+m_{1}+m_{2}+\cdots=L$, it is easy to see that $N^{\prime}=l_{1}$ $\dot{+} l_{2} \dot{+} \cdots$ and $N^{\prime \prime}=y_{1} \dot{+} y_{2} \dot{+} \cdots$. Thus $N^{\prime \prime}=N$ so that N is closed and $M+N=X$ while $M^{\prime}+N^{\prime}=L$.
3. Proof of the theorem. Since \mathfrak{B} is separable it is clear that $\mathfrak{B} \mid \mathfrak{M}$ is also. ${ }^{4}$ It follows then from Théorème 4 on page 124 of [3] that there exists a countable total set of members of the conjugate of $\mathfrak{B} \mid \mathfrak{M}$ and a countable total set of members of the conjugate of \mathfrak{B}. Now every member of the conjugate of $\mathfrak{B} \mid \mathfrak{M}$ has associated with it in an obvious fashion a member of the conjugate of \mathfrak{B} which vanishes throughout \mathfrak{M}. Thus the first countable total set defines a countable set of elements of the conjugate of \mathfrak{B} the intersections of the null spaces of which is \mathfrak{M}. Denote the linear span of these two countable subsets of the conjugate of \mathfrak{B} by L. Since \mathfrak{M} and \mathfrak{B} are separable there exists a dense countable set in \mathfrak{B} a subset of which is a dense set in \mathfrak{M}. Let X be the linear span of this countable set and let $M=\mathfrak{M} \cap X$. It is obvious that the X, L and M so defined satisfy the hypotheses of Lemma 1 and that the closures of M and X are \mathbb{M} and \mathfrak{B} respectively. That M is closed as a subspace of the linear system X_{L} follows from the fact that \mathfrak{M} is an intersection of null spaces of members of L. Let N be the closed subspace of X_{L} whose existence is guaranteed by Lemma 1 . We define \mathfrak{N} as the closure (in \mathfrak{B}) of N.
 that $x \in \mathfrak{M} \cap \mathfrak{N}$. Since \mathfrak{M} is the closure of M every element in M^{\prime} vanishes throughout \mathfrak{M}. Similarly every element in N^{\prime} vanishes throughout \mathfrak{N}. Thus every element in $M^{\prime}+N^{\prime}=L$ vanishes on x. But L is total. Therefore $x=0$. Thus $\mathfrak{M \cap} \cap=0$ and the theorem is proved.
4. Remarks. Murray's paper closes with a proof that in reflexive spaces quasi-complements which are not at the same time complements ${ }^{5}$ are very non-unique in the sense that every such both properly contains and is properly contained in other quasi-complements. This theorem and its proof may be extended to the nonreflexive case (but not the incomplete one) by considering the closed subspaces of the linear systems \mathfrak{B}_{A} and \mathfrak{U}_{B} where \mathfrak{A} is the conjugate of \mathfrak{B} rather than those of the Banach spaces \mathfrak{A} and \mathfrak{B}. The needed fact that the linear

[^1]union of a closed subspace with a finite-dimensional one is again closed follows from Theorem III-1 of [2]. The trouble when \mathfrak{B} is not complete is that \mathfrak{M}^{\prime} and \mathfrak{R}^{\prime} may be complementary even when \mathfrak{M} and \mathfrak{R} are not. That this can indeed happen is shown by the first example at the bottom of page 173 of [2].

Using this same device one may carry over Murray's theory of the connection between quasi-complements and closed projections almost word for word to the nonreflexive and noncomplete case.

Making further use of the methods and theorems of Chapter III of [2] one can show that if \mathfrak{B} is separable and \mathfrak{M} is a closed subspace of \mathfrak{B} such that neither \mathfrak{M} nor $\mathfrak{B} \mid \mathfrak{M}$ is finite-dimensional then the quasicomplement of \mathfrak{M} can always be selected so as not to be a complement and that whenever \mathfrak{B} is complete and \mathfrak{M} and \mathfrak{R} are quasi-complementary and not complementary then \mathfrak{B} has infinitely many linearly independent elements $\bmod \mathfrak{M}+\mathfrak{R}$.

Bibliography

1. F. J. Murray, Quasi-complements and closed projections in reflexive Banach spaces, Trans. Amer. Math. Soc. vol. 58 (1945) pp. 77-95.
2. G. W. Mackey, On infinite-dimensional linear spaces, Trans. Amer. Math. Soc. vol. 57 (1945) pp. 155-207.
3. S. Banach, Theorie des operations linéaires, Warsaw, 1932.

Harvard University

[^0]: Received by the editors August 20, 1945.
 ${ }^{1}$ The author is indebted to Professor Murray for letting him read this paper in manuscript form and for several helpful discussions during the preparation of the present note.
 ${ }^{2}$ Numbers in brackets refer to the bibliography.
 ${ }^{3}$ By linear we mean additive and homogeneous.

[^1]: ${ }^{4}$ Here $\mathfrak{B} \mid \mathfrak{M}$ denotes the quotient or difference space of $B \bmod \mathfrak{M}$.
 ${ }^{5}$ Complements of course are not unique either.

