ON PROXIMATE ORDERS OF INTEGRAL FUNCTIONS
S. M. SHAH

Let f(2) be an integral function of finite order p and let M(r)
=maxm-,| f(z)| . It is possible to find! a positive continuous function
p(r) having the following properties.

(1) p(r) is differentiable for » >7, except at isolated points at which
p’(r—0) and p’(r+0) exist;

(2) lim p(r) = p;

3) lim ro'(r) logr = 0;
log M

4 tim sup X0 _ 4
r—® yo(r)

Such a function is called a Lindelsf’s proximate order for the in-
tegral function f(2). The proof given by Valiron for the existence of
proximate orders is based on some rather deep results due to Blumen-
thal. The object of this note is to give a particularly simple proof of
the existence of proximate orders. The proof given here makes no use
of the special properties of M(r) and is therefore of wider scope.

Let o(r) =log log M(r)/log r. Either (A) o(r) >p for a sequence of
values of 7 tending to infinity, or (B) a(r) Sp for all large .

In case (A) we define ¢(r) = max,z.{o(x) }. Since o(r) is continuous,
lim sup,.. o(?) =p and () >p for a sequence of values of 7 tending
to infinity. Therefore ¢(r) exists. ¢(7) is a nonincreasing function of 7.

Let 71>¢* and ¢(r1) = (r1). Such values will exist for a sequence of
values of 7 tending to infinity.

Let p(r1) =¢(r1). Let ¢ be the smallest integer not less than 147,
such that ¢(r1) >¢(41), and let p(r) =p(r) =¢(r1) for ri<r =<t

Define #; as follows:

U > tl,
p(r) = p(ry) — log log log r + log log log # forty S r = w,
p(r) = ¢(r) forr = uy,

but p(r) >¢(r) for t; L7 <wui. Let 7, be the smallest value of » for which
re=%; and
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¢(r2) = a(rz).

If 72> w1, then let p(r) =¢(r) for uy =7 =r,. Since ¢(r) is constant for
u1 Sr =1y, therefore p(r) is constant for u, <7 <7, We repeat the argu-

ment and obtain that p(r) is differentiable in adjacent intervals. Fur-
ther

-1

p’r)=0 oo —mM8M8 —,
r log r log log r

and p(r) Z¢(r) =0 (r), for all »=r,. Further p(r) = (7) for an infinity
of values of r=ry, rs, - + +, p(#) is nonincreasing and lim,., ¢(r) =p.
Hence

lim sup p(r) = lim p(r) = p,
r—0 7%
and since log M(r) =77 =¢#(" for an infinity of 7, log M(r) <rr("
for the remaining r, therefore lim sup,., log M(r)/re(r =1.

Let a(r) =p for all large r (case (B)). Here there are two possibili-
ties:

(B.l) a'(f) =p
for at least a sequence of values of 7 tending to infinity;
(B.2) o) <op

for all large values of 7.

In case (B.1) we take p(7) =p for all values of 7.

In case (B.2) let £(r) =maxxs.s.{o(x)} where X >e¢* is such that
a(x) <p whenever x 2 X. £(r) is nondecreasing. Take a suitably large
value of #,> X and let

p(r)) = p,
p(r) = p + log log log r — log log log r; fors; Sr=sn,

where s1<r; is such that £(s;) =p(s1). If £(s1) #0(s1), then we take
p(r) =£&(r) up to the nearest point ¢ <s; at which £(t) =¢(t). p(7) is
then constant for £; 7 Ssi.

If £(s1) =0 (s1), then let ty=s1.

Choose 72 >r; suitably large and let p(72) =p,

p(r) = p + log log log r — log log log r, forsssr=sr

where s2 (<r;) is such that? £(s2) =p(ss). If E(s2) #o(sz), then let

3 sqis given by the largest positive root of £(s;) = p —log log log r:+log log log s.
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p(r)=£(r) for t, S Sss where 1, (<s2) is the point nearest to s; at
which £(f:) =a(t2). If £(s2) =ca(s2), then let f2=s;. For r<t; let p(r)
=p(t;) +log log log t; —log log log 7 for us Sr <t; where u; (<?,) is the
point of intersection of y =p with y = p(ts) +log log log ?; —log log log .

Let p(7) =p for r1S7 Zu,. It is always possible to choose 7; so large
that 7, <. We repeat the procedure and note that

p(r) Z &r) 2 o(r)

and p(r) =0 (r) for r=ty, s, t3, - - - . Hence lim,., p(r) =p, and
. log M(r)
lim sup ——— =
7w re(n)
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A NOTE ON THE SPECTRAL THEOREM
WILLIAM F. EBERLEIN

1. Introduction. Although the connections between the spectral
resolution of a self-adjoint transformation in Hilbert space, the mo-
ment problem, and Riesz’ integral representation [1]! for linear func-
tionals on the space C are known (cf. Stone [2], Murray [3], Widder
[4], Lengyel [5]), the following elementary derivation of the spectral
theorem from the Riesz theorem exhibits the connections in, perhaps,
the simplest light. We consider only bounded self-adjoint transforma-
tions H; one can treat an unbounded H by considering (I+4H?)-1,
which is bounded and self-adjoint [3, p. 95]. Note that the derivation
does not involve the separability of the Hilbert space §.

2. Six lemmas. Let H be a self-adjoint transformation with the
bounds a, b—that is, a||f]|2= (HY, f) <8||f]|? for all fEH, and || H]|
=max(|a|, |5]). Denote by C the space of continuous real-valued
functions defined on the closed interval (a, b), with ” f(x)” ===max| f(x)l
(a=x5b). Let p(x) = _nc;xi be any polynomial with real coefficients,
and let p(H) be the corresponding transformation p(H) = nc;Hi,
where H°=1,
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