
ON PROXIMATE ORDERS OF INTEGRAL FUNCTIONS 
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Let f(z) be an integral function of finite order p and let M(r) 
= max|;r|„r|/(2)|. I t is possible to find1 a positive continuous function 
p(r) having the following properties. 

(1) p(r) is differentiate for r > r 0 exceptât isolated points at which 
p ' ( r - O ) and p'(r+0) exist; 

(2) lim p(r) - p; 
r—*oo 

(3) lim rp'(r) log r = 0; 
r—+oo 

^ r l o g ^ ( r ) < 
(4) lim sup = 1. 

Such a function is called a Lindelof s proximate order for the in­
tegral function ƒ(z). The proof given by Valiron for the existence of 
proximate orders is based on some rather deep results due to Blumen-
thal. The object of this note is to give a particularly simple proof of 
the existence of proximate orders. The proof given here makes no use 
of the special properties of M{r) and is therefore of wider scope. 

Let cr(r) =log log M(r)/log r. Either (A) cr(r)>p for a sequence of 
values of r tending to infinity, or (B) <r(r) Sp for all large r. 

In case (A) we define 0(r) =m2LXx'&r{<r(x)}. Since <r(r) is continuous, 
lim suprH>00 <r(r) = p and <r(r) > p for a sequence of values of r tending 
to infinity. Therefore (j>(r) exists. 4>(r) is a nonincreasing function of r. 

Let ri>ee' and <f>(r\) ~cr(ri). Such values will exist for a sequence of 
values of r tending to infinity. 

Let p(fi)=#(ri) . Let h be the smallest integer not less than 1 + r i 
such that <j)(ri)>4>(h)t and let p(r) =p(ri) ^ ( f i ) for ri<r£h. 

Define U\ as follows: 

ui > h, 

p(r) « p(ri) - log log log r + log log log h for h S r S «i, 

p(r) = <t>(r) îorr = u%, 

but p(r) ><t>(r) for U ^r<ui. Let r2 be the smallest value of r for which 
r^Ui and 
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<t>(r2) = <rif 2). 

If r2>uu then let p(r) =<£(r) for u\^r^r2. Since </>(r) is constant for 
u\Ukr ^ 2 , therefore p(r) is constant for UxSrSr^ We repeat the argu­
ment and obtain that p(r) is differentiate in adjacent intervals. Fur­
ther 

p'(r) = 0 or ; 
r lóg r log log r 

and p(r) ^ 0 ( r ) ^cr(r), for all r^n. Further p{r) =<r(r) for an infinity 
of values of r = n , r2, • • • , p(r) is nonincreasing and limrH>00 <j>{r) = p. 
Hence 

lim sup p{r) = lim p(r) = p, 
r—+» f—+00 

and since log M(r) =^< r ( r )=rp ( r ) for an infinity of r, log j | f ( r ) < r ' ( r ) 

for the remaining r, therefore lim supr^oo log M(r)/rfi(>r)~l. 
Let <r(r) g p for all large r (case (B)). Here there are two possibili­

ties: 

(B.l) »(r) = P 

for a t least a sequence of values of r tending to infinity; 

(B.2) <r(r) < p 

for all large values of r. 
In case (B.l) we take p(r) = p for all values of r. 
In case (B.2) let %(r) ~maxxgx£r{<r(x)} where X>ee' is such that 

c(x)<p whenever xèz X. £(r) is nondecreasing. Take a suitably large 
value of ti>X and let 

p('i) = P, 

p(r) = p + log log log r - log log log rx for st £ r £ ru 

where Si<ri is such that £(si)=p(si). If ^ O ^ f a i ) , then we take 
p(r)=£(r) up to the nearest point h<S\ a t which t-(ti)~a(h). p(r) is 
then constant for ti^rSsi. 

If £($i) =<r(si), then let h = si. 
Choose r%>Y\ suitably large and let p(r2) = p , 

p(f) = p -(- log log log r — log log log r2 for s* £ r 5* r2 

where s2 (<r 2 ) is such that2 $(52)=p(^2). If £($2)5*<J(S2), then let 

a Si is given by the largest positive root of £($2) » p—log log log rs-f-log log log St. 
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PM**£(*') f° r h£rS$2 where h ( < ^ ) is the point nearest to s* at 
which €(li)«<r(4j). If $(52)==<r(52), then let h~$%. For r<t2 let p(r) 
=p(^)+log log log fc — log log log r for Ui^r^h where #1 (<*2) is the 
point of intersection of y—p with y = p (£2) + log log log fe—log log log r. 

Let p(r)~p for r i^ rgwi . It is always possible to choose H SO large 
that r\<ti\. We repeat the procedure and note that 

p(r) 2 «r) ^ cr(r) 

and p(r) =cr(f) for r «fit, /2, £3, • • • . Hence limr̂ oo p(r) —p* and 

log M(r) 
hm sup « 1. 
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A NOTE ON THE SPECTRAL THEOREM 

WILLIAM F. EBERLEIN 

1. Introduction. Although the connections between the spectral 
resolution of a self-adjoint transformation in Hubert space, the mo­
ment problem, and Riesz' integral representation [l]1 for linear func­
tional on the space Care known (cf. Stone [2], Murray [3], Widder 
[4], Lengyel [5]), the following elementary derivation of the spectral 
theorem from the Riesz theorem exhibits the connections in, perhaps, 
the simplest light. We consider only bounded self-adjoint transforma­
tions H\ one can treat an unbounded H by considering (I+i ï 2)- 1 , 
which is bounded and self-adjoint [3, p. 95]. Note that the derivation 
does not involve the separability of the Hubert space £ . 

2. Six lemmas. Let H be a self-adjoint transformation with the 
bounds a, J—that is, a\\f\\*£(Hf, /)^&||/| |2 for all f EH, and \\H\\ 
= max(|a|, \b\). Denote by C the space of continuous real-valued 
functions defined on the closed interval (a, 6), with \\f(x)\\ =max| f(x) | 
(a^x^b). Let p(x) « S o ^ 7 be any polynomial with real coefficients, 
and let p(H) be the corresponding transformation i>(H) ^jTjllcJIt* 
where£T0 = J. 
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