APPROXIMATION IN THE SENSE OF LEAST *p*TH POWERS WITH A SINGLE AUXILIARY CONDITION OF INTERPOLATION

A. SPITZBART

Introduction. Let w = g(z) map the interior of the analytic Jordan curve *C* conformally into the interior of the circle |w| = 1. We shall say that the function f(z), analytic interior to *C*, is of class E_p there if $\int_{C_r} |f(z)|^p |dz|$ is bounded for r < 1, where C_r is the curve |g(z)| = r. A function is of class H_p if it is analytic for |z| < 1, and of class E_p there. We are taking p > 0.

Of the functions f(z), analytic interior to C, of class E_p there, with $f(\alpha) = A$ ($z = \alpha$ a point interior to C, A an arbitrary constant), let $F_0(z)$ be the one¹ which minimizes the integral $\int_C |f(z)|^p |dz|$. Let $P_n(z)$ be the minimizing polynomial of degree n with $P_n(\alpha) = A$, for this integral. We shall prove that the sequence $P_n(z)$, $n = 0, 1, 2, \cdots$, converges maximally to $F_0(z)$ on the closed set Γ , consisting of C and its interior, and then derive some extensions. We use the term maximal convergence in the sense of J. L. Walsh [3, p. 80].²

We denote by ρ the maximum value of R such that the minimizing function can be extended so as to be analytic and single-valued interior to Γ_R , as used by Walsh [3, p. 80].

1. Inequalities: unit circle. We shall start with the results for the unit circle.

THEOREM 1.1. Of the functions f(z) of class $H_p(p>0)$ interior to C: |z| = 1, with $f(\alpha) = A$, $|\alpha| < 1$, the one which minimizes the integral $\int_C |f(z)|^p |dz|$ is given by $F_0(z) = A[(|\alpha|^2 - 1)/(\bar{\alpha}z - 1)]^{2/p}$, with the branch for which $F_0(\alpha) = A$.

For, it is true that $\int_C |f(z)|^p |dz| \ge 2\pi |f(0)|^p$, so that for the case $\alpha = 0$, the minimizing function is $F_0(z) = A$. If, in the general case, we map the interior of the unit circle conformally into itself, with $z = \alpha$ corresponding to the origin, the desired result is obtained.

The main new tool exhibited by the paper is the following theorem.

THEOREM 1.2. Let $f_n(z)$ be a sequence of functions of class H_p with $f_n(\alpha) = A$ and $\int_C |f_n(z)|^p |dz| \leq \int_C |F_0(z)|^p |dz| + \epsilon_n$, where $\epsilon_n \rightarrow 0$ as

Presented to the Society, January 1, 1941; received by the editors December 8, 1945.

¹ The minimizing function $F_0(z)$ is unique.

² Numbers in brackets refer to the references cited at the end of the paper.

 $n \rightarrow \infty$. If D is any closed region lying entirely interior to C, there is a constant M, depending only on D, such that

$$\left|f_n(z) - F_0(z)\right| \leq M \epsilon_n^{1/2}, \qquad for \ z \ in \ D.$$

This implies continuous convergence of $f_n(z)$ to $F_0(z)$ interior to C, and gives a measure of the degree of convergence.

We start the proof with the case $\alpha = 0$, A = 1. Then

$$\int_{C} \left| f_n(z) \right|^p \left| dz \right| \leq 2\pi + \epsilon_n, \qquad f_n(0) = 1.$$

With the further restriction that $f_n(z) \neq 0$ for |z| < 1, the functions $f_n(z)^{p/2}$ are of class H_2 and have the expansions $1 + \sum_{i=1}^{i=\infty} a_{i,n} z^i$, with $\sum_{i=1}^{i=\infty} |a_{i,n}|^2$ convergent, from which, by Parseval's Theorem

$$\int_{C} \left| f_{n}(z)^{p/2} \right|^{2} \left| dz \right| = 2\pi \left[1 + \sum_{i=1}^{\infty} \left| a_{i,n} \right|^{2} \right] \leq 2\pi + \epsilon_{n}$$

so that we get the inequality in

$$\int_{C} |f_{n}(z)^{p/2} - 1|^{2} |dz| = 2\pi \sum_{i=1}^{\infty} |a_{i,n}|^{2} \leq \epsilon_{n}.$$

By a lemma of J. L. Walsh [3, p. 101] this implies, for some constant M',

$$\left|f_n(z)\right|^{p/2} - 1 \right| \leq M \epsilon_n^{\prime 1/2}, \qquad z \text{ in } D,$$

where M' depends only on D, and we can write

$$f_n(z) - 1 = [1 + \eta_n(z)]^{2/p} - 1, \quad |\eta_n(z)| \leq M' \epsilon_n^{1/2}, \quad z \text{ in } D.$$

For *n* sufficiently large, the binomial expansion may be used, and there is a constant M'' such that, for some integer N,

$$|f_n(z) - 1| \leq M'' \cdot \max_{z \text{ in } D} |\eta_n(z)|, \qquad n > N.$$

This gives the desired inequality for n sufficiently large, and a suitable choice of the constant makes it valid for all n.

If now the functions $f_n(z)$ do vanish interior to C, let $B_n(z)$ be the Blaschke product for the zeros of $f_n(z)$ interior to C, normalized so that $B_n(0) > 0$. We write

(1)
$$f_n(z) = B_n(z) \cdot \psi_n(z)$$

where $\psi_n(z) \neq 0$ interior to C, and $\psi_n(z)$ is of class H_p for each n. Since

 $|B_n(z)|$ has boundary values equal to unity a.e. on C,

$$\int_{C} \left| f_{n}(z) \right|^{p} \left| dz \right| = \int_{C} \left| \psi_{n}(z) \right|^{p} \left| dz \right| \leq 2\pi + \epsilon_{n},$$

from which, setting $\Psi_n(z) = \psi_n(z)/\psi_n(0)$,

(2)
$$\int_C |\Psi_n(z)|^p |dz| \leq (2\pi + \epsilon_n)/[\psi_n(0)]^p.$$

From (1) we have $\psi_n(0) \ge 1$ and hence from (2), $\int_C |\Psi_n(z)|^p |dz| \le 2\pi + \epsilon_n$. The first part of the proof now applies to $\Psi_n(z)$ and gives, for some constant M',

(3)
$$|\Psi_n(z)^{p/2} - 1| \leq M' \epsilon_n^{1/2}, \qquad z \text{ in } D.$$

Since the left member of (2) is not less than 2π , we have

(4)
$$[\psi_n(0)]^{p/2} \leq (1 + \epsilon_n/2\pi)^{1/2}$$

which, with (3), means that for some M''

$$\left|\psi_n(z)\right|^{p/2}-1\right|\leq M^{\prime\prime}\cdot\epsilon_n^{1/2},\qquad z \text{ in } D,$$

and, as in the first part of the proof,

(5)
$$|\psi_n(z)-1| \leq M\epsilon_n^{1/2}, \qquad z \text{ in } D.$$

We now desire a measure of the degree of convergence of $B_n(z)$. We have a.e. on C,

$$|B_n(z) - 1|^2 = |B_n(z)|^2 + 1 - 2\Re[B_n(z)],$$

so that, since $B_n(0)$ is real, and the Cauchy integral formula applies to $B_n(z)$ on C,

$$\int_{c} |B_{n}(z) - 1|^{2} |dz| = 4\pi [1 - B_{n}(0)].$$

By (1) and (4), $B_n(0) \ge (1 + \epsilon_n/2\pi)^{-1/p}$, so that for some constant M',

$$\int_{C} \left| B_{n}(z) - 1 \right|^{2} \left| dz \right| \leq M' \epsilon_{n}, \quad n = 0, 1, 2, \cdots,$$

and by the lemma used previously, we have for some M,

(6)
$$|B_n(z)-1| \leq M \epsilon_n^{1/2}, \qquad z \text{ in } D.$$

In (5) and (6), M is not necessarily the same, but the two inequalities

340

imply the existence of a constant M, depending only on the region D, such that $|f_n(z)-1| \leq M \epsilon_n^{1/2}$, z in D.

It is clear that this inequality holds in the case $f_n(0) = A$, where the convergence is to the function identically equal to A.

Let us now return to the original problem, where

$$f_n(\alpha) = A, \quad F_0(z) = A \left[(|\alpha|^2 - 1)/(\bar{\alpha}z - 1) \right]^{2/p}.$$

Here we have

(7)
$$\int_{C} \left| f_{n}(z) \right|^{p} \left| dz \right| \leq \int_{C} \left| F_{0}(z) \right|^{p} \left| dz \right| + \epsilon_{n}$$

If we make the transformation $w = (z - \alpha)/(1 - \overline{\alpha}z)$, (7) becomes

$$\int_{C'} |F_n(w)|^p |dw| \leq 2\pi |A|^p + \epsilon_n/(1-|\alpha|^2), \quad C':|w| = 1,$$

where

$$F_n(w) = (1 + \bar{\alpha}w)^{-2/p} \cdot f_n[(w + \alpha)/(1 + \alpha w)]$$

and since $F_n(0) = A$, this is precisely the situation already treated. The closed region D in the z-plane corresponds in the w-plane to a closed region D' which lies completely interior to C'. Hence, for some constant M',

$$|F_n(w) - A| \leq M' \epsilon_n^{1/2}, \qquad w \text{ in } D',$$

and we have finally for some constant M,

$$\left|f_n(z)-F_0(z)\right|\leq M\epsilon_n^{1/2}, \qquad z \text{ in } D.$$

Continuous convergence interior to C for the case $f_n(0) = 1$ was proved by Keldysch and Lavrentieff [1, p. 35], but no attempt was made to determine the degree of convergence.

2. Maximal convergence: unit circle. We now estimate the ϵ_n for minimizing polynomials.

THEOREM 2.1. Let $P_n(z)$ be the polynomial of degree n with $P_n(\alpha) = A$ for which $\int_C |P_n(z)|^p |dz|$ is a minimum. Then, given any number R such that $1 < R < \rho$, there exists a constant M, not depending on n, such that in the inequality

$$\int_{C} |P_{n}(z)|^{p} |dz| \leq \int_{C} |F_{0}(z)|^{p} |dz| + \epsilon_{n}, \quad C: |z| = 1,$$

we may take $\epsilon_n \leq M/R^{2n}$.

A. SPITZBART

Let $\pi_n(z)$ be the polynomial of degree *n*, of best approximation to $F_0(z)$ on Γ in the sense of least maximum modulus, with the condition $\pi_n(\alpha) = A$. The $\pi_n(z)$ converge maximally to $F_0(z)$ on Γ [3, §11.2], so that for any *R* as above there is a constant *M* such that

$$|\pi_n(z) - F_0(z)| \leq M/R^n, \qquad z \text{ on } \Gamma.$$

This implies first of all that for *n* sufficiently large, the $\pi_n(z)$ do not vanish interior to *C*. Let us now write

$$\pi_n(z) = F_0(z) + R_n(z)$$

from which

$$\pi_n(z)^{p/2} = F_0(z)^{p/2} [1 + R_n(z)/F_0(z)]^{p/2}, \quad |R_n(z)| \leq M/R^n, \quad z \text{ in } \Gamma.$$

Since $F_0(z)$ is bounded from zero on Γ , the expansion of the binomial is valid for *n* sufficiently large, and there is a constant M' and an integer N such that

$$\left|\pi_n(z)^{p/2}-F_0(z)^{p/2}\right|\leq M'\cdot\max_{\substack{z\text{ in }\Gamma}}\left|R_n(z)\right|, \quad z\text{ in }\Gamma, \quad n>N,$$

or

(8)
$$|\pi_n(z)^{p/2} - F_0(z)^{p/2}| \leq M''/R^n, \quad z \text{ in } \Gamma, \quad n > N.$$

The function $F_0(z)^{p/2} - \pi_n(z)^{p/2}$ is analytic on Γ for each *n* which is large enough, and vanishes for $z = \alpha$. Hence it is orthogonal to $(1 - \bar{\alpha}z)^{-1}$ on *C*, by which we get

(9)
$$\int_C \left[F_0(z)^{p/2} - \pi_n(z)^{p/2}\right] \cdot \overline{F}_0(z)^{p/2} \left| dz \right| = 0.$$

Thus,

(10)
$$\int_{C} |F_{0}(z)^{p/2} - \pi_{n}(z)^{p/2}|^{2} |dz|$$
$$= \int_{C} [F_{0}(z)^{p/2} - \pi_{n}(z)^{p/2}] [\overline{F}_{0}(z)^{p/2} - \overline{\pi}_{n}(z)^{p/2}] |dz|$$
$$= -\int_{C} F_{0}(z)^{p/2} \overline{\pi}_{n}(z)^{p/2} |dz| + \int_{C} |\pi_{n}(z)|^{p} |dz|.$$

But by (9), $\int_C F_0(z)^{p/2} \bar{\pi}_n(z)^{p/2} |dz| = \int_C |F_0(z)|^p |dz|$, so that (10) becomes

$$\int_{C} |\pi_{n}(z)|^{p} |dz| = \int_{C} |F_{0}(z)|^{p} |dz| + \int_{C} |F_{0}(z)^{p/2} - \pi_{n}(z)^{p/2}|^{2} |dz|.$$

342

Applying (8) we have for some M''' and n large enough

$$\int_{C} \left| \pi_{n}(z) \right|^{p} \left| dz \right| \leq \int_{C} \left| F_{0}(z) \right|^{p} \left| dz \right| + M^{\prime\prime\prime}/R^{2n}.$$

But since $P_n(z)$ is the minimizing polynomial of degree *n* for $P_n(\alpha) = A$, this inequality is also true for $P_n(z)$, and all *n*, and the theorem is proved.

THEOREM 2.2. The sequence of minimizing polynomials $P_n(z)$ converges maximally to $F_0(z)$ on Γ .

It must be shown that given R, with $1 < R < \rho$, there exists M such that $|P_n(z) - F_0(z)| \leq M/R^n$, z in Γ . Choose an R_1 such that $R < R_1 < \rho$. We can then find a closed region D, lying completely interior to C, such that $D_{R_1/R}$ contains Γ in its interior [3, §2.2, Theorem 2]. By Theorem 2.1 we have

$$\int_{C} \left| P_{n}(z) \right|^{p} \left| dz \right| \leq \int_{C} \left| F_{0}(z) \right|^{p} \left| dz \right| + M'/R_{1}^{2n}.$$

But then by Theorem 1.2,

$$\left| P_n(z) - F_0(z) \right| \leq M''/R_1^n, \qquad z \text{ in } D,$$

which gives [3, §4.7, Theorem 8, corollary]

$$|P_n(z) - F_0(z)| \leq M'''/R^n, \qquad z \text{ in } D_{R_1/R}.$$

This inequality, being valid on $D_{R_1/R}$, is valid on its subset Γ , and the theorem is proved.

3. Maximal convergence: analytic Jordan curve. Let C be an arbitrary analytic Jordan curve of the z-plane, and $z = \alpha$ a point interior to C. Let w = g(z), z = h(w) map the interior of C conformally into the interior of C': |w| = 1 so that $z = \alpha$ corresponds to w = 0. Let Γ consist of C and its interior.

THEOREM 3.1. Among the functions f(z) of class $E_p(p>0)$ interior to C, with $f(\alpha) = A$, the minimum of $\int_C |f(z)|^p |dz|$ occurs for the function $F_0(z) = A[g'(z)/g'(\alpha)]^{1/p}$.

For, with the transformation w = g(z), we have

$$\int_{C} |f(z)|^{p} |dz| = \int_{C'} |f[h(w)] \cdot h'(w)^{1/p}|^{p} |dw|.$$

The function $f[h(w)] \cdot h'(w)^{1/p}$ is of class H_p interior to C' and takes

1946]

on the value $A \cdot h'(0)^{1/p}$ at w = 0. Hence the minimum of the integral on the right occurs when $F_0[h(w)] \cdot h'(w)^{1/p} = A \cdot h'(0)^{1/p}$, which in the z-plane gives $F_0(z)$ as above.

This result in a restricted form is due to Julia,³ and in more general form to Keldysch and Lavrentieff.

The previous methods carry over to the present situation. Thus, suppose we have the inequality of Theorem 1.2, where the $f_n(z)$ are of class E_p interior to $C, f_n(\alpha) = A$, and $\epsilon_n \rightarrow 0$ as $n \rightarrow \infty$. In the w-plane this becomes

$$\int_{C'} |f_n[h(w)] \cdot h'(w)^{1/p} |^p |dw| \leq \int_{C'} |F_0[h(w)] \cdot h'(w)^{1/p} |^p |dw| + \epsilon_n.$$

The hypotheses of Theorem 1.2 are satisfied, and a closed region D entirely interior to C corresponds to a closed region D' entirely interior to C'; then there is a constant M such that

$$|f_n[h(w)] \cdot h'(w)^{1/p} - F_0[h(w)] \cdot h'(w)^{1/p}| \le M\epsilon_n^{1/2}, \quad w \text{ in } D'.$$

But $h'(w)^{1/p}$ is bounded from zero on Γ , so that in the z-plane this becomes

$$|f_n(z) - F_0(z)| \leq M' \epsilon_n^{1/2}, \qquad z \text{ in } D.$$

THEOREM 3.2. Theorem 1.2 is valid if all statements in it now refer to an analytic Jordan curve.

In estimating the ϵ_n for the minimizing polynomials $P_n(z)$, we use polynomials $\pi_n(z)$ of best approximation to $F_0(z)$ in the sense of least maximum modulus on Γ , subject to $\pi_n(\alpha) = A$. The proofs carry over, and we have the general result as follows.

THEOREM 3.3. Let Γ be a closed region bounded by the analytic Jordan curve C, and let $z = \alpha$ be a point interior to C. If $P_n(z)$ is the minimizing polynomial of degree n, in the sense of least pth powers (p>0), to the function f(z) = 0, on C, with $P_n(\alpha) = A$, then the sequence $P_n(z)$ converges maximally on Γ to the minimizing function $F_0(z) = A[g'(z)/g'(\alpha)]^{1/p}$.

4. Approximation to $(z-\alpha)^{-1}$: analytic Jordan curve. The results already obtained extend to polynomials of best approximation to certain rational functions.

THEOREM 4.1. Let Γ be a closed region bounded by the analytic Jordan curve C, and $z = \alpha$ a point interior to C. The function of class E_p interior

344

⁸ Julia, G. Leçons sur la représentation conforme des aires simplement connexes, Paris, 1931.

to C which minimizes the integral

$$\int_{C} \left| (z - \alpha)^{-1} - f(z) \right|^{p} \left| dz \right|$$

is given by

$$F_0(z) = \frac{1}{z - \alpha} - \frac{g'(z)^{1/p}}{g'(\alpha)^{1/p-1} \cdot g(z)}$$

where w = g(z) is the mapping function of §3.

It is seen that $F_0(z)$ is analytic at $z = \alpha$ if properly defined there.

THEOREM 4.2. Let $f_n(z)$ be a sequence of functions of class E_p interior to C, for which

$$\int_{\mathcal{C}} \left| (z-\alpha)^{-1} - f_n(z) \right|^p \left| dz \right| \leq \int_{\mathcal{C}} \left| (z-\alpha)^{-1} - F_0(z) \right|^p \left| dz \right| + \epsilon_n,$$

where $\epsilon_n \rightarrow 0$ as $n \rightarrow \infty$. If D is any closed region lying entirely interior to C, there is a constant M, depending only on D, such that

$$|f_n(z) - F_0(z)| \leq M \epsilon_n^{1/2}, \qquad z \text{ in } D.$$

As in §3, we may take $\epsilon_n \leq M/R^{2n}$ for the minimizing polynomials, which enables us to prove the following theorem.

THEOREM 4.3. The sequence of polynomials $P_n(z)$ of best approximation in the sense of least pth powers to the function $(z-\alpha)^{-1}$ on an analytic Jordan curve C converges maximally on Γ to the minimizing function.

The method of proof for these results is indicated by the following. We can write

$$\int_{C} |(z - \alpha)^{-1} - f(z)|^{p} |dz| = \int_{C} |g(z) \cdot (z - \alpha)^{-1} - g(z)f(z)|^{p} |dz|.$$

The function within the absolute value signs on the right is now of class E_p interior to C, and at the point $z = \alpha$ takes on the value $g'(\alpha)$. If we apply Theorem 3.1, we get $F_0(z)$ as above.

5. Introduction of a weight function. We shall merely state a result, derived by methods as above.

THEOREM. The minimizing function for

$$\int_C n(z) \left| f(z) \right|^p \left| dz \right|, \quad f(\alpha) = A,$$

where C is an arbitrary analytic Jordan curve, $z = \alpha$ is a point interior to C, f(z) is of class E_p interior to C, and n(z) is the modulus on C of a function N(z) analytic and nonvanishing in the closed region Γ , is

$$F_0(z) = A \left[\frac{N(\alpha)}{N(z)} \cdot \frac{g'(z)}{g'(\alpha)} \right]^{1/p}$$

Let $P_n(z)$ be the corresponding minimizing polynomial of degree n. Then the sequence $P_n(z)$, $n = 0, 1, 2, \cdots$, converges maximally to $F_0(z)$ on Γ .

References

1. Keldysch and Lavrentieff, Domaines limites par des courbes rectifiables, Ann. École Norm. (3) vol. 54 (1937) pp. 1-38.

2. F. Riesz, Über die Randwerte einer analytischen Funktion, Math. Zeit. vol. 18 (1923) pp. 87-95.

3. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloquium Publications, vol. 20, 1935.

UNIVERSITY OF WISCONSIN

NOTE ON THE LOCATION OF THE CRITICAL POINTS OF HARMONIC FUNCTIONS

J. L. WALSH

The object of this note is to publish the statement of the following theorem.

THEOREM I. In the extended (x, y)-plane let R_0 be a simply-connected region bounded by a continuum C_0 not a single point, and let the disjoint continua C_1, C_2, \cdots, C_n lie interior to R_0 and together with C_0 bound a subregion R of R_0 . By means of a conformal map of R_0 onto the unit circle we define in R_0 non-euclidean lines, the images of arbitrary circles orthogonal to the unit circle. Denote by II the smallest closed non-euclidean convex region in R_0 which contains C_1, C_2, \cdots, C_n .

Let the function u(x, y) be harmonic interior to R, continuous in the closure of R, with the values zero on C_0 and unity on C_1, C_2, \dots, C_n . Then the critical points of u(x, y) in R are n-1 in number and lie in Π .

Critical points are of course to be counted according to their multiplicities.

A limiting case of Theorem I has already been established:¹ if f(z)

Received by the editors November 29, 1945.

¹ J. L. Walsh, Bull. Amer. Math. Soc. vol. 45 (1939) pp. 462-470; see p. 465. The result was proved later by W. Gontcharoff, C. R. (Doklady) Acad. Sci. URSS. vol. 36 (1942) pp. 39-41.