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where C is an arbitrary analytic Jordan curve, z*&ais a point interior 
to C, f(z) is of class Ep interior to C, and n(z) is the modulus on C of a 
function N(z) analytic and nonvanishing in the closed region Tt is 

m-Abnrm • 
Let Pn(z) be the corresponding minimizing polynomial of degree n. Then 
the sequence Pn(z), w = 0, 1, 2, • • • , converges maximally to FQ(Z) on T. 
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NOTE ON THE LOCATION OF THE CRITICAL POINTS 
OF HARMONIC FUNCTIONS 
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The object of this note is to publish the statement of the following 
theorem. 

THEOREM I. In the extended (x, y)-plane let R0 be a simply-connected 
region bounded by a continuum Co not a single point, and let the disjoint 
continua Ci, Ci, • • • , Cn lie interior to Ro and together with Co bound a 
subregion R of Ro. By means of a conformai map of i?0 onto the unit 
circle we define in Ro non-euclidean lines, the images of arbitrary circles 
orthogonal to the unit circle. Denote by II the smallest closed non-euclidean 
convex region in R0 which contains &, Ci, • • • , Cn. 

Let the function u(x, y) be harmonic interior to R, continuous in the 
closure of R, with the values zero on Co and unity on C\, Ci, • • • , Cn. 
Then the critical points of u{x, y) in R are n — l in number and lie in IL 

Critical points are of course to be counted according to their multi­
plicities. 

A limiting case of Theorem I has already been established i1 if f(z) 
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is an analytic function whose modulus is constant on the boundary of 
a simply-connected region R, where f(z) is analytic interior to R and 
continuous in the closure of R, then the zeros of f(z) in R lie in the 
smallest non-euclidean convex polygon in R containing the zeros of 
f(z) in R. Theorem I is readily established by the use of this limiting 
case, and of methods developed elsewhere by the present writer;2 de­
tails are left to the reader. 

Theorem I admits an extension to the case where RQ is bounded 
by Co, and the subregion R of R0 is bounded by Co and by further dis­
joint continua Ci, C2, • • • , Cm, Cm+i, • • • , Cn in R0; the function 
u(x, y) is supposed harmonic interior to i?, continuous in the closure 
of Rt with the values zero on Co, unity on &, C2, • • • , Cm, and minus 
unity on Cm+i, Cm+2, • • • , Cn; a non-euclidean line À in R0 (if existent) 
which separates Ci, C2, • • • , Cm from Cm+i, C^+2, • • • , C« cannot pass 
through a critical point of u(x} y). If a A exists, the points of Ro which 
do not lie on any such A form two disjoint non-euclidean convex 
point sets in R0 which are closed with respect to Ro, which contain 
respectively Ci, C2, • • • , Cm and Cm+i> Cm+2> • • • , Cn, and which to­
gether contain all critical points of u(x, y) in R. This extension of 
Theorem I may likewise be proved from a limiting case already formu­
lated (loc. cit) for a region i?0 bounded by a circle. 
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