ON THE NUMBER OF 1-1 DIRECTLY CONFORMAL MAPS WHICH A MULTIPLY-CONNECTED PLANE REGION OF FINITE CONNECTIVITY $p(>2)$ ADMITS ONTO ITSELF

MAURICE HEINS

1. Introduction. It is well known ${ }^{1}$ that a plane multiply-connected region G of finite connectivity greater than two admits only a finite number of 1-1 directly conformal maps onto itself (such maps will be termed henceforth conformal automorphisms of G); in fact, if G is of connectivity $p(>2)$, then the number of conformal automorphisms of G can in no case exceed $p(p-1)(p-2)$. The object of the present note is to determine the best upper bound, $N(p)$, for the number of conformal automorphisms of G as a function of the connectivity p. The basic theorems are:

Theorem A. The group of conformal automorphisms of a plane region of finite connectivity $p(>2)$ is isomorphic to one of the finite groups of linear fractional transformations of the extended plane onto itself.

Theorem B. If $p(>2)$ is different from $4,6,8,12,20$, then $N(p)=2 p$. For the exceptional values of p, one has

$$
N(4)=12, \quad N(6)=N(8)=24, \quad N(12)=N(20)=60
$$

The proofs of these theorems are based upon the following results: ${ }^{2}$
I. An arbitrary plane region G of finite connectivity p admits a 1-1 directly conformal map onto a canonical plane region G^{*} whose boundary consists of points and complete circles (either possibly absent), in all p in number, and mutually disjoint.

If G and G^{*} denote the groups of conformal automorphisms of G and G^{*} respectively, then G is isomorphic to G^{*}. Hence for the purposes of the present problem it suffices to consider the canonical regions and their associated groups of conformal automorphisms.
II. A conformal automorphism of a canonical region G^{*} admits an extension in definition throughout the extended complex plane as a linear fractional transformation.

[^0]Hence the group G^{*} is in essence a finite group of linear fractional transformations of the extended plane onto itself. In the next section it will be shown that there exists a region Γ which lies in the extended complex plane, is bounded by p distinct points, and in addition
(i) contains G^{*} as a subregion,
(ii) remains invariant under the automorphisms of G^{*}.

It will then follow that it suffices to consider the problem for regions bounded by p distinct points. The proof of Theorem B is thus reduced to the determination of the connectivities of regions Γ which are bounded by a finite set of points and which remain invariant under the members of a given finite group of linear fractional transformations of the extended complex plane onto itself.
2. Reduction of problem to the case where the region is bounded by p distinct points. We start then with a canonical region G^{*} whose boundary consists of p disjoint components which are either points or circles and the associated group of conformal automorphisms G^{*}. Boundary components which consist of points will be unaltered. If there are circles present among the boundary components, say $\beta_{1}, \beta_{2}, \cdots, \beta_{m}\left(1 \leqq m \leqq p\right.$), one proceeds as follows. Suppose $\boldsymbol{\beta}_{k}$ ($1 \leqq k \leqq m$) is carried into itself by some transformation $S \in G^{*}$ other than the identity. Note that S is an elliptic linear fractional transformation and hence possesses a unique fixed point ζ_{k} in the region G_{k} of the extended plane bounded by β_{k} which is exterior to G^{*}. Further any transformation of G^{*} which carries β_{k} into itself possesses ζ_{k} as a fixed point since the subgroup of G^{*} whose members preserve β_{k} is cyclic. For any such transformation (not the identity) ζ_{k} is the unique fixed point in g_{k}. In this case we replace $\boldsymbol{\beta}_{k}$ by the point ζ_{k}. If β_{k} is not carried into itself by any transformation of G^{*} other than the identity, then β_{k} and its images with respect to the transformations of G^{*} constitute a set of n disjoint circles, where n is the order of G^{*}. These circles are permuted among themselves by the transformations of G^{*}. To replace these circles by points, we select any one of themsay $\beta_{k_{0}}$-and fix a point $\eta_{k_{0}}$ on $\beta_{k_{0}}$ replacing thereby $\beta_{k_{0}}$ by $\eta_{k_{0}}$. The image of $\beta_{k_{0}}$ with respect to a transformation of G^{*} is to be replaced by the image of $\eta_{k_{0}}$ with respect to the same transformation of G^{*}. In this manner G^{*} is replaced by a region $\Gamma \supset G^{*}$ of connectivity p whose boundary consists of p distinct points. It is readily verified that Γ remains invariant with respect to the transformations of G^{*}.
Hence, to determine

$$
N(p) \equiv \max _{(G)}\left[\operatorname{order} G^{(G)}\right],
$$

where G is of connectivity p and $G(G)$ is the group of conformal automorphisms of G, it suffices to consider regions G bounded by p distinct points.
3. An observation. It is to be observed that $N(p)$ is bounded below by $2 p$. This follows from the fact that the region in the extended z-plane whose boundary consists of the points

$$
z=e^{2 \pi i k / p} \quad(k=0,1,2, \cdots, p-1)
$$

is carried into itself by the dihedral group of order $2 p$ generated by

$$
S: z|1 / z, \quad T: z| e^{2 \pi i / p_{z}} .
$$

This fact will be significant for determining $N(p)$.
4. Determination of $N(p)$. Given a positive integer p, a finite group G of linear fractional transformations of the extended complex plane onto itself will be termed admissible relative to p, if there exists a region Γ which is bounded by p distinct points and remains invariant under the transformations of G. Given G, the integers p for which G is admissible are listed in the following table: ${ }^{3}$

Table 1

If G is isomorphic to	then p for which G is admissible are given by
Cyclic group of order n	$n\left[\frac{a}{n}+\frac{b}{1}\right] \quad \text { where } \begin{aligned} & a=0,1,2 \\ & b=0,1,2, \ldots ; a+b>0 \end{aligned}$
Dihedral group of order $2 n$	$2 n\left[\frac{a}{n}+\frac{b}{2}+\frac{c}{1}\right] \quad \begin{aligned} a & =0,1 \\ \text { where } b & =0,1 \\ c & =0,1,2, \cdots ; a+b+c>0 \end{aligned}$
Tetrahedral group	$12\left[\frac{a}{3}+\frac{b}{2}+\frac{c}{1}\right] \quad \begin{aligned} a & =0,1,2 \\ \text { where } b & =0,1 \\ c & =0,1,2, \cdots ; a+b+c>0 \end{aligned}$
Octahedral group	$24\left[\frac{a}{4}+\frac{b}{3}+\frac{c}{2}+\frac{d}{1}\right] \text { where } \begin{aligned} a & =0,1 \\ b & =0,1 \\ d & =0,1 \\ d & =0,1,2, \cdots ; a+b+c+d>0 \end{aligned}$
Icosahedral group	$60\left[\frac{a}{5}+\frac{b}{3}+\frac{c}{2}+\frac{d}{1}\right] \text { where } \begin{array}{rl} a & b=0,1 \\ c=0,1 \\ d & =0,1,2, \cdots ; a+b+c+d>0 \end{array}$

[^1]Recall that all finite groups G of linear fractional transformations of the extended complex plane onto itself are considered in Table 1. Since $N(p) \geqq 2 p$, it suffices to consider groups G admissible relative to $p(>2)$ whose orders are at least $2 p$. These are readily determined from Table 1 and are given below together with their orders in Table 2.

Table 2

p	Groups G admissible relative to p and of order $\geqq 2 p$	Order of G
$\neq 4,6,8,12,20,30$	Dihedral	$2 p$
4	Tetrahedral	12
	Dihedral	8
6	Tetrahedral	12
	Octahedral	24
	Dihedral	12
8	Octahedral	24
	Dihedral	16
12	Octahedral	24
	Icosahedral	60
	Dihedral	24
20	Icosahedral	60
	Dihedral	40
30	Icosahedral	60
	Dihedral	60

Theorem B follows at once from Table 2.
Remark. It would be interesting to deduce Theorems A and B without using the canonical regions G^{*}.

Brown University

[^0]: Received by the editors, January 14, 1946.
 ${ }^{1}$ Cf. G. Julia, Legons sur la représentation conforme des aires multiplement connexes, Paris, 1934. In particular, see pp. 68-69.
 ${ }^{2}$ Cf. Hurwitz-Courant, Funktionentheorie, Berlin, 1929. See pp. 512-520.

[^1]: ${ }^{3}$ This table is readily verified on reference to the classical results of the theory of finite groups of linear fractional transformations.

