ON THE NUMBER OF 1-1 DIRECTLY CONFORMAL MAPS WHICH A MULTIPLY-CONNECTED PLANE REGION OF FINITE CONNECTIVITY p (>2) ADMITS ONTO ITSELF

MAURICE HEINS

1. Introduction. It is well known¹ that a plane multiply-connected region G of finite connectivity greater than two admits only a finite number of 1-1 directly conformal maps onto itself (such maps will be termed henceforth conformal automorphisms of G); in fact, if G is of connectivity p(>2), then the number of conformal automorphisms of G can in no case exceed p(p-1)(p-2). The object of the present note is to determine the best upper bound, N(p), for the number of conformal automorphisms of G as a function of the connectivity p. The basic theorems are:

THEOREM A. The group of conformal automorphisms of a plane region of finite connectivity p(>2) is isomorphic to one of the finite groups of linear fractional transformations of the extended plane onto itself.

THEOREM B. If p(>2) is different from 4, 6, 8, 12, 20, then N(p) = 2p. For the exceptional values of p, one has

N(4) = 12, N(6) = N(8) = 24, N(12) = N(20) = 60.

The proofs of these theorems are based upon the following results:²

I. An arbitrary plane region G of finite connectivity p admits a 1-1 directly conformal map onto a canonical plane region G^* whose boundary consists of points and complete circles (either possibly absent), in all p in number, and mutually disjoint.

If G and G^* denote the groups of conformal automorphisms of Gand G^* respectively, then G is isomorphic to G^* . Hence for the purposes of the present problem it suffices to consider the canonical regions and their associated groups of conformal automorphisms.

II. A conformal automorphism of a canonical region G^* admits an extension in definition throughout the extended complex plane as a linear fractional transformation.

Received by the editors, January 14, 1946.

¹ Cf. G. Julia, Lecons sur la représentation conforme des aires multiplement connexes, Paris, 1934. In particular, see pp. 68–69.

² Cf. Hurwitz-Courant, Funktionentheorie, Berlin, 1929. See pp. 512-520.

Hence the group G^* is in essence a *finite group* of linear fractional transformations of the extended plane onto itself. In the next section it will be shown that there exists a region Γ which lies in the extended complex plane, is bounded by p distinct points, and in addition

(i) contains G^* as a subregion,

(ii) remains *invariant* under the automorphisms of G^* .

It will then follow that it suffices to consider the problem for regions bounded by p distinct points. The proof of Theorem B is thus reduced to the determination of the connectivities of regions Γ which are bounded by a finite set of points and which remain invariant under the members of a given finite group of linear fractional transformations of the extended complex plane onto itself.

2. Reduction of problem to the case where the region is bounded by p distinct points. We start then with a canonical region G^* whose boundary consists of p disjoint components which are either points or circles and the associated group of conformal automorphisms G^* . Boundary components which consist of points will be unaltered. If there are circles present among the boundary components, say $\beta_1, \beta_2, \cdots, \beta_m$ $(1 \le m \le p)$, one proceeds as follows. Suppose β_k $(1 \leq k \leq m)$ is carried into itself by some transformation $S \in G^*$ other than the identity. Note that S is an elliptic linear fractional transformation and hence possesses a unique fixed point ζ_k in the region G_k of the extended plane bounded by β_k which is exterior to G^* . Further any transformation of G^* which carries β_k into itself possesses ζ_k as a fixed point since the subgroup of G^* whose members preserve β_k is *cyclic*. For any such transformation (not the identity) ζ_k is the unique fixed point in g_k . In this case we replace β_k by the point ζ_k . If β_k is not carried into itself by any transformation of G^* other than the identity, then β_k and its images with respect to the transformations of G^* constitute a set of *n* disjoint circles, where *n* is the order of G^* . These circles are permuted among themselves by the transformations of G^* . To replace these circles by points, we select any one of them say β_{k_0} —and fix a point η_{k_0} on β_{k_0} replacing thereby β_{k_0} by η_{k_0} . The image of β_{k_0} with respect to a transformation of G^* is to be replaced by the image of η_{k_0} with respect to the same transformation of G^* . In this manner G^* is replaced by a region $\Gamma \supset G^*$ of connectivity pwhose boundary consists of p distinct points. It is readily verified that Γ remains invariant with respect to the transformations of G^* .

Hence, to determine

$$N(p) \equiv \max_{\{G\}} [\text{order } G(G)],$$

where G is of connectivity p and G(G) is the group of conformal automorphisms of G, it suffices to consider regions G bounded by p distinct points.

3. An observation. It is to be observed that N(p) is bounded below by 2p. This follows from the fact that the region in the extended z-plane whose boundary consists of the points

$$z = e^{2\pi i k/p}$$
 $(k = 0, 1, 2, \cdots, p - 1)$

is carried into itself by the dihedral group of order 2p generated by

$$S:z \mid 1/z, \quad T:z \mid e^{2\pi i/p}z.$$

This fact will be significant for determining N(p).

4. Determination of N(p). Given a positive integer p, a finite group G of linear fractional transformations of the extended complex plane onto itself will be termed *admissible relative to p*, if there exists a region Γ which is bounded by p distinct points and remains invariant under the transformations of G. Given G, the integers p for which G is *admissible* are listed in the following table:³

If G is isomorphic to	then p for which G is admissible are given by		
Cyclic group of order n	$n\left[\frac{a}{n}+\frac{b}{1}\right] \qquad \text{where } \begin{array}{c} a=0, 1, 2\\ b=0, 1, 2, \cdots; a+b \end{array}$	>0	
Dihedral group of order 2n	$2n\left[\frac{a}{n}+\frac{b}{2}+\frac{c}{1}\right] \qquad \text{where } b=0, 1$ $c=0, 1, 2, \cdots; a+b+$	- <i>c</i> >0	
Tetrahedral group	$12\left[\frac{a}{3} + \frac{b}{2} + \frac{c}{1}\right] \qquad a = 0, 1, 2$ where $b = 0, 1$ $c = 0, 1, 2, \dots; a+b+1$	-c>0	
Octahedral group	$ \begin{array}{c} a = 0, 1 \\ a = 0, 1 \\ a = 0, 1 \\ b = 0, 1 \\ c = 0, 1 \\ c = 0, 1 \\ d = 0, 1, 2, \cdots; a + b + \end{array} $	c+d>0	
Icosahedral group	$ \frac{a = 0, 1}{60 \left[\frac{a}{5} + \frac{b}{3} + \frac{c}{2} + \frac{d}{1}\right]} \text{ where } \begin{array}{c} a = 0, 1 \\ b = 0, 1 \\ c = 0, 1 \\ d = 0, 1, 2, \cdots; a + b + d \\ d = $	-c+d>0	

TABLE 1

^a This table is readily verified on reference to the classical results of the theory of finite groups of linear fractional transformations.

1946] 1-1 DIRECTLY CONFORMAL MAPS

Recall that all finite groups G of linear fractional transformations of the extended complex plane onto itself are considered in Table 1. Since $N(p) \ge 2p$, it suffices to consider groups G admissible relative to p(>2) whose orders are at least 2p. These are readily determined from Table 1 and are given below together with their orders in Table 2.

Þ	Groups G admissible relative to p and of order $\geq 2p$	Order of G
≠4, 6, 8, 12, 20, 30	Dihedral	2p
4	Tetrahedral	12
	Dihedral	8
6	Tetrahedral	12
	Octahedral	24
	Dihedral	12
8	Octahedral	24
	Dihedral	16
12	Octahedral	24
	Icosahedral	60
	Dihedral	24
20	Icosahedral	60
	Dihedral	40
30	Icosahedral	60
	Dihedral	60

TABLE 2

Theorem B follows at once from Table 2.

Remark. It would be interesting to deduce Theorems A and B without using the canonical regions G^* .

BROWN UNIVERSITY