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247. A. C. Sugar: An elementary exposition of the relaxation method. 
This is, as labeled, an elementary exposition. The purpose of this paper is to ex

hibit the simplicity and power of the relaxation method, to complete and explain pre
vious sketchy or obscure discussions of this subject. It is also intended to direct 
attention to some mathematical, physical, and philosophical questions that may be 
raised in connection with this method. (Received May 29, 1946.) 

248. A. C. Sugar: On the relaxation-matrix method of solving bound-
ary value problems. 

This is a continuation of the study of the use of relaxation and iterative methods 
of inverting the matrices of the systems of equations obtained from boundary value 
problems by finite difference methods. In a previous paper, entitled The use of invari
ant inverted matrices for the approximate solution of classes of boundary value problems, 
the writer inverted matrices by relaxation methods and applied them to the solution 
of simple illustrative problems. In the present paper, this work is continued and ap
plications are made to some of the typical boundary value problems of mechanics. 
(Received May 29, 1946.) 

249. A. C. Sugar: The use of invariant inverted matrices f or the simul
taneous approximate solution of classes of boundary value problems. Pre
liminary report. 

The writer considers the simultaneous approximate solution of classes of boundary 
value problems. Each class consists of the totality of boundary value problems having 
the same differential equation and the same boundary but different boundary condi
tions. Using finite difference methods it is shown that the derived system of equations 
will have an inverse matrix M, invariant over the class, which may be determined by 
relaxation methods. A solution of any member of the class may then be obtained by 
multiplying M by a column matrix defined by the corresponding boundary values. 
This paper will be primarily concerned with the application of this method to La
place's equation. The effect of modifications of the boundary on M will be considered. 
This technique may be applied to many other types of differential equations. This is 
true, in particular, of Poisson's equation and of nonlinear equations containing the 
Laplace operator, since, as far as the algebraic treatment is concerned, these two types 
may be treated as Laplace equations with altered boundary conditions. Finally, the 
possibility of considering M as an approximation or an analogue of Green's function is 
studied. (Received April 16, 1946.) 

GEOMETRY 

250. L. M. Blumenthal : Superposability in elliptic spaces. 
Two subsets of a metric space M are superposable provided a congruent (that is, 

one-to-one, distance-preserving) mapping of M onto itself exists which maps one sub
set onto the other. In spaces most studied (euclidean, spherical, and so on) congruence 
of subsets implies that they are superposable, but this is not the case in elliptic spaces 
En,r for w>l , and hence this property cannot be expressed in metric terms alone. 
This paper shows that congruent but not superposable subsets of En,r fall into two 
classes (a) congruent subsets contained irreducibly in different dimensional subspaces 
and (b) those contained irreducibly in subspaces of the same dimension. By means of 
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attaching to each elliptic m-tuple a class of equivalent matrices, necessary and suffi
cient conditions for superposability of elliptic subsets are obtained in terms of equiva
lence of the corresponding classes of attached matrices. These conditions are applied 
to yield new properties of elliptic spaces and quadratic forms. (Received April 16, 
1946.) 

251. Herbert Busemann: Intrinsic area. 
Recent examples of Besicovitch have turned the attention to the geometric con

cept of area. Although the requirement that area should be intrinsic (that is, depend 
only on the geodesic distances on the surface and not on the way the surface is im
bedded) is fundamental for all applications in geometry, it has never entered the mod
ern investigations on area. An intrinsic area can be defined for a general class of 
surfaces in metric spaces in such a way that it has the standard value for euclidean 
polyhedra and smooth surfaces in Riemann spaces. Moreover the definition at
tributes an area to surfaces in Finsler spaces. This value is for smooth surfaces the 
only area which coincides with the customary area for elementary surfaces, and for 
which the surface with the greater intrinsic distances has always the greater area. 
The paper will appear in the Annals of Mathematics. (Received May 27, 1946.) 

252. N. A. Court: On the biratio of the altitudes of a tetrahedron. 
The three pairs of opposite edges a, a'; b, b'\ c, c' of a tetrahedron (T) are the 

axes of three orthogonal hyperboloids (aaf), (bb')j (cc') belonging to the same pencil 
of quadrics which also includes the hyperboloid (H) formed by the altitudes of (T) 
(Bull. Amer. Math. Soc. vol. 51 (1945) p. 663; Duke Math. J. vol. 13 (1946) pp. 123-
128). The biratio (that is, the anharmonic ratio) of the four hyperboloids considered is 
equal to the biratio rj of the four altitudes of (T). If the three vertices of (ÜT) are fixed, 
for a given value of q, the fourth vertex lies in a plane perpendicular to the plane 
formed by the fixed vertices. The biratio of the tetrad of points in which an altitude 
of (T) meets the faces of the tetrahedron formed by the orthocenters of the faces of 
(T) is equal to rj. (Received May 29,1946.) 

253. Tibor Radó: The isoperimetric inequality and the Lebesgue defi
nition of surface area. I. 

Let U* denote the solid unit sphere u2+v2+w*£l, and let p = T(p*), p*S U*, 
be a topological mapping from U* into Euclidean three-space. 5, D will denote the 
images, under T, of the boundary and of the interior of £/"*, and | S\, \D\ will denote 
the three-dimensional measures of 5, D. Let A be the Lebesgue area of 5, and consider 
the isoperimetric inequality (*) V2^AZ/36TT, where V is the volume enclosed by 5. 
In case | s | >0, a decision must be made whether the interior volume F»-= \D\ or 
the exterior volume Vt~ \ D\ +1 S\ is to be used in the inequality (*). An example of 
Besicovitch shows that (*) generally fails to hold for Ve. In this paper, it is shown that 
(*) holds in the Besicovitch example for F»-, and further examples, based on an obser
vation of Geöcze made in 1913, are given which indicate that beyond the elementary 
level the concept of "enclosed " volume must be properly defined if the isoperimetric 
inequality is to hold. (Received May 27, 1946.) 

254. Tibor Radó: The isoperimetric inequality and the Lebesgue defi
nition of surface area. II. 

Let S* denote the unit sphere w2+fl2+w2=B 1, and let p~ T(p*), p*GS*, be a con-
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tinuous mapping from 5* into Euclidean xyz space. Then T determines a (not neces
sarily simple) closed surface S. Define an index-function n (%, y, z) as follows: if the 
point (x, y, z) lies on 5, then w = 0; if (x, y, z) does not lie on S, then n is equal to the 
topological index of the point (x, y, z) with respect to S. Then n(x, y, z) vanishes out
side of a sufficiently large sphere K. Define V(S), the volume enclosed by 5, as the 
integral of | n(x, y, z)\ in iC if this integral exists, and let V(S) = 00 otherwise. The pur
pose of the paper is to establish the isoperimetric inequality V(S)2 ^A{S)z/36ir, where 
A (5) is the Lebesgue area of S, as a generalization of previous results of Tonelli and 
Bonnesen. (Received May 29, 1946.) 

STATISTICS AND PROBABILITY 

255. Z. W. Birnbaum: Tshebysheff inequality for two dimensions. 
For independent random variables X, Y with expectations zero and variances 

a2
x, <T\ the trivial inequality P(X2-\- Y2^ T2) S(«£+*>)/r1 is replaced by a sharp in

equality. (Received April 5, 1946.) 

256. Mark Kac: A discussion of the Ehrenfest model. Preliminary 
report. 

A particle moves along a straight line in steps A, the duration of each step being r. 
The probabilities that the particle at kA will move to the right or left are (1/2) (1 —k/R) 
and (l/2)(l^rk/R) respectively. R and k are integers and | k\ ^R. M. C. Wang and 
G. E. Uhlenbeck in their paper On the theory of Brownian motion. II (Review of 
Modern Physics vol. 17 (1945) pp. 323-342) discuss this random walk problem and 
state several unsolved problems. In answer to some of the questions raised the follow
ing results are obtained: Let (1 — z)R~'(l +z)B+> «OCCJf zh(j an integer), then the prob
ability P(n, m\ s) that a particle starting from nA will come to m A after time t=sr is 
equal to 2-2R(-l)B+1^(i /R)9C^C^+mt where the summation is extended over all j 
such that I.; I ?*R. Also, if R is even the probability P'(#, 01 s) that the particle starting 
from nA will come to 0 at t=*$r for the first time is calculated. For « = 0 this gives a 
solution of the so-called recurrence time problem first studied on simpler models by 
Smoluchowski. Through a limiting process in which r—>0, A—»0, A2/2r—>D, l/Rr-^ft, 
nA-+Xo, mA—tx, 5T = ^ one is led to fundamental distributions concerning the velocity 
of a free Brownian particle. In particular, P(n, m\s) approaches the well known 
Ornstein-Uhlenbeck distribution. (Received May 23, 1946.) 

257. Howard Levene: A test of randomness in two dimensions. 
A square of side N is divided into N2 unit cells, and each cell takes on the charac

teristics A or B with probabilities p and g = l— p respectively, independently of the 
other cells. A cell is an "upper left corner" if it is A and the cell above and cell to the 
left are not A. Let V\ be the total number of upper left corners and let F2, 7*, VA be 
the number of similarly defined upper right, lower right, and lower left corners respec
tively. Let V=*(Vi-\-V2-\"V%-\-Vi)/4c. It is proved that V is normally distributed in 
the limit with E(V) =p(Nq+p)2 and <r2(V) **N2pq2(2 ~10£+22£2-13/>8)/2. The con
ditional limit distribution of V, when p is estimated from the data, and the limit dis
tribution of a related quadratic form are also obtained. These statistics are in a sense 
a generalization of the run statistics used for testing randomness in one dimension. 
(Received May 28, 1946.) 


