THE KLINE SPHERE CHARACTERIZATION PROBLEM
R. H. BING

The object of this paper is to give a solution to the following prob-
lem proposed by J. R. Kline: Is a nondegenerate, locally connected,
compact continuum which is separated by each of its simple closed
curves but by no pair of its points homeomorphic with the surface of
a sphere? The answer is in the affirmative.

A solution to the Kline problem gives a characterization of a simple
closed surface. Partial solutions of this problem have been made by
Hall [1, 2]* and Jones [3]. Other characterizations of a simple closed
surface have been given by Kuratowski [4], Zippin [5, 6], Wilder
[7]and Claytor [8]. Previous to the giving of these characterizations,
Moore gave [9] two sets of axioms, each set of which characterized a
set topologically equivalent to a plane.

DerinNITION. We say that M disrupts X from Y in D if there is an
arc from X to ¥ in D but each such arc contains a point of M.

We shall make use of the following lemma.

LeEMMA. Suppose that space is locally connected and cannot be sepa-
rated by the omission of any pair of its points, that the boundary of the
connected domain D is equal to the sum of the mutually exclusive sets
M, N and E, each of which contains a point which is accessible from D,
and that D' is a connected subdomain of D such that no point of D either
disrupts D’ from E+M in D+E-+ M or disrupts D’ from E+N in
D+E-+N. Then there is an open arc from M to N in D that does not
disrupt D’ from E in D+E.

Proor. Consider the arc AB in D+B from a point 4 of D’ to a
point B of E. Let W; be the set of all points P of 4B such that there
is an open arc from P to E in D that does not intersect some open arc
from M to N in D. Assume that the first point R of 4B in the order
from A to B on the closure of W; does not belong to D’.

If R disrupts D’ from E in D-+E, there are an arc from D’ to M
in D+M—R and an arc from D’ to N in D4+ N—R. In the sum of
these two arcs plus D’ there is an open arc from M to N in D which
does not intersect RB. This is contrary to the definition of R. Hence,
R does not disrupt D’ from E in D+ E.

Let A’B’ be an arc in D+B’—R from a point 4’ of D’ to a point
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B’ of E. Since D’ is connected and does not contain R, we may sup-
pose that 4’ is 4. Let X be the last point of 4’B’ in the order from
A’ to B’ on AR and let Y be a point of AB between R and B such
that RY contains no point of XB’.

Choose a metric for XB’+4XY. Let P; be a point of W;-XY such
that no point of W; at a distance of more than 1 from P, is between
P; and X on XY. Denote by V; the set of all points P of XB’ such
that there are in D an open arc from P to E and an open arc from X P,
to E such that the sum of these two open arcs does not intersect some
open arc from M to Nin D. Let Q; be a point of V7 such that no point
of V; at a distance of more than 1 from @, is between Q; and X
on XB’.

Denote by W, the set of all points P of XV such that there are in
D an open arc from P to E and an open arc from X @, to E such that
the sum of these open arcs does not intersect some open arc from M
to N in D. Let P; be a point of W,-X P, such that no point of W, at
a distance of more than 1/2 from P, is between P; and X on XY.

In general, let W, (or V,) be the set of all points P of X ¥ (or XB’)
such that there are an open arc from P to E in D and an open arc
from XQ._1 (or XP,) to E in D such that the sum of these open arcs
does not intersect some open arc from M to N in D. Let P, (or Q.)
be a point of W, (or V,) on XP, 1 (or XQn-1) such that no point of
W, (or V.) at a distance of more than 1/# from P, (or Q,) is between
P, (or Q,) and X on XY (or XB’).

Let Py and Q, be the limit points of Py, Py, - - - and Q1, Qy, - - -
respectively. We note that for no integer » is P, between X and P,
on XY oris Q. between X and Q, on XB’.

Since no pair of points separates space, there is an arc from 4 to
E in space that contains neither P, nor Q. Let 4//B’’ be a subset of
this arc irreducible from 4 X+ XPy,+ XQ, to E. We shall suppose that
A’ is a point of 4 X+ X P, since the argument to follow may be ad-
justed to take care of the case where it belongs to 4 X +XQ,.

There is an integer ¢ such that A4’ contains no point of W; and
A''B"’ intersects neither PoP; nor Q¢Q;. There is an arc M'N’ in
D4 M’'+ N’ from a point M’ of M to a point N’ of N such that there
are open arcs (P’'B;) and (Q'B;) in D—{(M'N"), where P’ and Q’ are
points of PoP; and Q.Q; respectively and B; (j=1, 2) is a point of E.
Denote by P’/ the first point of XP’ in the order from X to P’ on
P’'B;+Q'B; and denote by Q’/ the first point of XQ’ in the order from
X to Q' on P’B;+Q’'B;. Let P''Bs and Q''B, be arcs in P'B,+Q'B;
where B and B, are points of B;-+Ba.

Denote the set AX+XP’'+XQ’' by T. Since no point of AX is a
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point of W;, P'’Bs+Q’’Ba does not intersect AX. Then P’’Bs+Q’'B,
intersects T only at P’'+Q"".

Now M’'N’ intersects T or else there is an open arc from 4 to E
in T+ P’'Bs and R is not as assumed. Also, M’N’ does not intersect
T in only one point, for if it did, there would be an open arc from X
to E in T4 P’'B;+Q’' By which would not intersect M’N’. But X is
not a point of W..

Let M'" and N’/ be the first and last points of M’N’ in the order
from M’ to N’ on T. Replace the part of M’'N’ between M'’ and N'’
by an arc a from M’’ to N’/ in T. Now one of the points M'/, N"/
belongs to XP'’, for if neither were a point of XP’/, there would be
an open arc from X to E in XP’'+P’'B; which would not intersect
M'M'"4a+N'"N'. This contradicts the fact that X is not a point
of W.. Also, one of M'’, N’ is a point of XQ'’. Since A’ is not a point
of W, it is not between P’/ and M’'+N’' on XP’’.

Let C be the first point of 4’/B’’ in the order from 4’’ to B’’ on
M+MM'4+N+N'N'+E+P'"B;+Q'"By. Now C is not a point of
E+P’'Bs+Q''B,, for if it were, there would be an open arc from 4"’
to E in A"’C+P""Bs+Q’'By that would not intersect M'M''+a
+N''N’. But 4"/ is not a point of W;.

Assume that C is a point of M+ M’'M"’. Consider an arc 8 from M
to Nin A”C+M'M""+T+N''"N’ containing 4’'C. We note that 3
does not contain M’/. Now A’ is not a point of XP'/, for if it were,
there would be an open arc from 4’/ to E in P'’B;+Q’'Bs+ T which
would not intersect 8. Also, 4’/ is not a point of 4X or else there
would be an open arc from X to E in P’’B3;+Q’’'Bs+ T which would
not intersect 8. But X is not a point of W;. Hence, C is not a point
of M+M'M'". Likewise, we find that C is not a point of N+N''N'.

This establishes the lemma. The assumption that R is not a point
of D’ leads to the contradiction that the point C of M+ M'M"'+ N
+N""N'4+E+P'"Bs+Q’'B; belongs to neither E+P’'B;+Q’’Bs,
M+M' M nor N+N'"N'.

THEOREM. Suppose that S is a nondegenerate, compact continuous
curve such that no pair of points but every simple closed curve of S sepa-
rates it. Then S is topologically equivalent to the surface of a sphere.

ProOF. Regard S as space. It is known [6, 10] that S is a simple
closed surface if no arc separates it. We shall show that no arc sepa-
rates S.

Before giving the details of the proof, we shall briefly outline what
we intend to do. On the assumption that some arc separates space,
we shall get a finite collection H; of connected domains such that
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their sum does not separate space and such that the sum of any two
nonintersecting elements of H; separates the sum of the elements of
H,. Collections H;, Hs, - - - are defined which satisfy corresponding
conditions and which are such that the closure of each element of
H, 11 1s a subset of the sum of the elements of H,. See the figure. There

Fi1G. 1

are actually many more elements in H; and H; than are shown in the
figure. The collections Hy, H,, - - - are described in such a way that
the common part of their sums is a simple closed curve not separating
space. Hence, we shall show that the assumption that some arc sepa-
rates space leads to the contradiction that some simple closed curve
does not. We now consider the details of the proof.

Assume that an arc separates the point X from the point Y. Then
there is an arc 4 B that separates X from Y such that no proper sub-
arc of AB separates X from Y. Let Dx and Dy be the complementary
domains of AB containing X and Y respectively.

Description of collection H;. Assume that a metric has been chosen
for S and let € be a positive number less than one one-hundredth of
the distance from 4 to B. We shall describe a collection H; of con-
nected domains. The sum of the elements of H; will be denoted by Hi*.
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The collection H; of connected domains hy,1, ki, « - -, k1, (¢2>100)
will satisfy the following conditions:

(1) h,: intersects hi,; only if ¢ is equal to either j—1, j or j+1
(h,ep1=M 1 and h1a=h,s);

(2) S—Hi*is connected;

(3) some point of S— Hy* is accessible from #;,.,;

(4) the diameter of k,; is less than ¢;

(5) no connected subset of H* that intersects %;,; and k1,:42 is of
diameter less than €/4.

Denote by Dy, D,, - - -, D, the elements of a finite collection of
connected domains covering S such that the diameter of each is less
than €/100. Suppose that each of the domains Dy, D, - - -, D;
intersects the complement of Dx-+Dy, each of the domains
Dy, Djys, - -+, Dy is a subset of Dx and each of the domains
Dyy1, Diys, -+ -, D, is a subset of Dy.

Let a1, a2, - - -+, a; be a collection of arcs in the complement of
Dx+Dy+A+B such that o; (=1, - - -, j) intersects D; and AB.

Let A’ and B’ be points of the arc AB such that 44’ and B’B are
arcs that do not intersect ox+a2+ - - - +a;j, each of the arcs 44"
and B'B is covered by an element of Dy, D,, - - - , D,, some point of
A’B’ is accessible from Dz(Z=X, Y) and if D, is an element of
Dy, D,, - - -, D, in Dz, then no point of Dz either disrupts D, from
AB’in Dz+AB’ or disrupts D, from A’B in Dz+A'B.

Considering Dx, Dj1, Dx-(AA'—A"), Dx-(B’B—B’)and Dx-A'B’
as D, D/, M, N and E of the preceding lemma, we find that there is
an arc ajp1 from A4’B’ to Dj;q in Dx+A’B’ that does not disrupt
AA’'—A' from B'B—B’ in Dx+AB—A'B’. Let D’ be a component
of Dx —Dx ;41 that contains an open arc from a point of A4’ —4"
to a point of B’'B—B’. If D,,, is not a subset of D’, let a;2 be an arc
in Dx—D’'4+A4'B’ from A’B’ to a point of Dje. If Dj;s is a subset
of D’, we shall apply the lemma to get an arc o2 from D5 to A’B’
in Dx+A’B’ such that aj1+aj.2 does not disrupt 44’—A4’ from
B'B—B’ in Dx+AB—A’B’. The procedure is described in the fol-
lowing paragraph.

Let R be a point of D’. Since no point of Dx disrupts D;;» from
AB’in Dx+AB’, there is an arc 8 from D3 to AB' in Dx+AB'—R.
A subarc of 8 in D'+ AB’+a;.1—R intersects Dj;2 and 4B’ +ajy.
Hence, Rdoes notdisrupt Dy from AB’+ajin D'+D’ - (AB’ +aj.1).
Also, R does not disrupt D, from A’B+aj1in D'+D’ - (A’'B+aj1).
Applying the lemma, we find that there is an arc from D, to
A'B'+ajy in D'+ A4'B’ 44 that does not disrupt 44’'—A’ from
B'B—B’ in D’4+AB—A'B’. Then there is an arc aj, in Dx+A'B’
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from Djys to A’B’ such that aji1+aje does not disrupt 44’'—A4’
from B'B—B'in Dx+AB—A'B’.

Likewise, we find that there is an arc a;3 from Dj3 to A’B’ in
Dx+A4'B’ such that aj1+aje+ajs does not disrupt A4’ —A' from
B'B—B’ in Dx+AB—A'B’. A continuation of this process gives
that there are arcs a1, ajye, - -+, ar in Dx+A'B’ whose sum does
not disrupt A4’ — A’ from B’B—B’ in Dx+AB —A’'B’ and such that
a,(p=7i+1, - - -, k) intersects D, and 4’B’. Also, there are arcs
Olkt1, Qky2y * * * 4 0ain Dy+A4’B’ whose sum does not disrupt 44’ — A4’
from B’'B—B’in Dy+AB—A’B’ and such thata, (p=k+1, - - - ,n)
intersects D, and 4'B’.

Let G be the collection of all domains g such that g is a component
of the common part of the complement of AB+ai+oe+ - - - +an
and some domain of D, Dy, - - -, D,. If P is a point of D;, there is
an arc in D; from P to ;. Hence, if g is an element of G, some point
of AB+ay+aoe+ - - - 4o, is accessible from g.

Let g4 and gp be domains of diameters less than €/100 that cover
AA'—A’ and B'B—B’ respectively but no point of 4’B’+a1+as
+ -+ - 4a,. There exists a finite collection Gx of domains of G such
that this collection but no collection of fewer elements of G satisfies
the condition that the sum of the elements of Gx is a connected sub-
set of Dx and intersects both g4 and gp. Denote the elements of Gx
by g, gs, + - -, g Where g, intersects go, g; (¢=2, - - -, r—1) inter-
sects g;41 and g, intersects gg. Denote g4 by g1 and gg by g,

Also, there exists a finite collection Gy of domains of G such that
this collection but no collection of fewer elements of G satisfies the
condition that the sum of the elements of Gy is'a connected subset
of Dy and intersects both g4 and gp. Denote the elements of Gy by
grioy Er48, * * * , gs Where g (4;=r+41, - - -, s—1) intersects g;11 and g,
intersects g1.

Let E denote g1+g:+ - - - +g, plus all points that it separates
from A’B’. Each component of the common part of E and an element
of G intersects an element of g1, gs, - - - , g.. However, it is to be noted
that no such component intersects two g;'s that do not belong to a
consecutive set of three domains of g, g2, - - -, gs g1, g2. Denote by
g! the sum of g; and all such components that intersect g;. We note
that g/ is a diameter less than €/33.

If three is a factor of s, denote the sum of the first three elements
of g/, g/, -, g by ki, the sum of the next three elements by
hs, - - - and the sum of the last three elements by k,. If three is a
factor of s+1, then ki, ks, - - -+ and k, are defined as before except
that %, is the sum of the last four elements of g/, g/, - - - , g4 instead
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of the last three. If three is a factor of s+2, each of %, and &, is
the sum of four elements of g{, g/, - - -, gJ. Since each %; contains
either g4, gp or an element g of G which does not intersect g4 +gp and
since a point of AB+a1+as+ - - + +a, is accessible from g, then a
point of 4’B’4+o1+o0e+ « - + +a, is accessible from ;. Now #%; is of
diameter less than € /8 and the collection Ay, Ay, - - -, h, satisfies
conditions analogous to conditions (1), (2) and (3) to be satisfied by
hl'ly h1,2) Tty hl,t-

Let %1, be the sum of ky, hs, - - -, ks where some connected sub-
set of Ai+he+ - - +h, of diameter less.than €/4 intersects
ki, he, - - - and £k, but no such subset intersects both #; and fn41;
let 1,2 be the sum of Ay41, Bnte, * + -, hn where some connected subset
of hi+ha+ - - - +h,of diameter less than € /4 intersects hpi1, Bny2, - *
and %, but no such subset intersects both 4,1and A,41; - - - jand let
h1,: be the sum of Zpy1, kpye, - - -, b, where some connected subset
of hi+he+ - - - +h, of diameter less than 3€/4 intersects hpy1,
By, - - - and k, but no subset of hi+he+ - - - +h, of diameter
less than € /4 intersects both %,y and h;. We use 3e/4 in the last
case instead of €/4 in order to insure that no connected set in
hi+he+ - - - +£h, of diameter less than /4 intersects both %, and
hi. The collection H; satisfies conditions (1), (2), (3), (4) and (5).

Description of collection H;. Choose a positive number e less than
one one-hundredth of the diameter of any connected set in Hi* that
intersects #1,; and %i,:42. We shall describe a collection H, of connected
domains k1, kas, © - -, h2,s such that:

(1) ha,; intersects h,,; only if < is equal to either j—1, j or j+1
(he,sr1=hs and he11=hs,);

(2) S—H,*is connected;

(3) some point of .S—Hy* is accessible from #,,;;

(4) the diameter of k;,; is less than e;

(5) no connected subset of Hy* that intersects hs,; and ks, iz is of
diameter less than e/4;

(6) each hi,; contains 98 consecutive elements of ka1, ka2, * * - , h2,e}

(7) if H(n; ’1:, j) denotes hn,i—100+ s +h,.,.‘+ e +hn','+ LR
+ha,it100 and hi,; and £ ,; intersect he,m and ks, respectively, then
either H(1; 7, 7) covers the closure of H(2; m, k) and H(1; j, 1) covers
the closure of H(2; k, m) or H(1; 1, j) covers the closure of H(2; k, m)
and H(1;j, 7) covers the closure of H(2; m, k).

Denote by C the component that contains 51, 5+%;,6 of the common
part of hy2+hi s+ - - - +hi,9 and the complement of the closure of
h1,1+h1,10. We shall show that if P is a point of k;,5+%1,6 and R is a
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point of C—P, then R does not disrupt P from S—H*in S—H*+C.
Let PQ be an arc in S—R from P to a point Q of S—Hi*. Let Q' be
the first point of PQ in the order from P to Q on S—C. If PQ’ inter-
sects k3, then there is an arc from PQ’'—Q’ to S—H¥ in S—H* -+ 5
because a point of .S — Hi* is accessible from £,,3. Also, if PQ’ intersects
hi,s, R does not disrupt P from S—Hy* in S—H*+C. If PQ’ inter-
sects neither 5,3 nor ks, then Q' is a point of S—Hy*. This demon-
strates that R does not disrupt P from S—H7*in S—H¥*+C.

Let G be a finite collection of connected domains covering k1,54 71,6
such that each intersects %i,5+%1,6 and is of diameter less than
€/1200. No point of C disrupts an element of G from S—H;* in
S—H*+C. Repeated applications of the preceding lemma give that
there is a continuum K in S— H:*+4C that intersects 4’B’ and each
element of G but does not disrupt k1,1 from k0 in bya+hre+ - - -
+Fh1,10. Let G’ be the set of all domains g’ such that g’ is either the
common part of %,2+hk1,s+ - - - 4k, the complement of K and an
element of G, or the common part of the complement of K and &;
forzequal to 2, 3,4, 7,8 or 9.

There exists a finite collection G’/ of elements of G’ such that the
sum of the elements of G’/ is a connected domain intersecting 7,1
and %;,10 but the sum of no subcollection of G’ having fewer elements
than G’/ is a connected domain intersecting %1, and %, 10. Assume that
g1 of G’ intersects k1,4, gi (¢=1, - - -, r—1) intersects gi41 and g, in-
tersects /,10.

There exists a collection g/, g/, - - -, g/ of connected domains such
that g/ intersects k1,1, g/ intersects g/i1, g/ intersects k1,10 and the
closure of g/ (k=1, - - -, 7) is a subset of g;.

Let E denote hya+gl+ - +gf+hio+ - - - +h1,: plus all
points that it separates from A’B’. Each component of the common
part of E and an element of G’ intersects one of the domains k1,
g, -+, g, b0 but no such component intersects two of these
domains that do not belong to a consecutive set of three of these
domains. Add such components to the ones of k1,1, g/, #1,10 that they
intersect to form the sets k1, g{’, hio. We note that the diameter of
each g/’ not intersecting hy,2—+hi,s+h1, s+ b1, 7+ 11,8+ b0 is less than
€,/400.

Consecutive elements of g{’, g/, - - -, g/’ may be combined by
threes and fours in a manner previously described so as to get
a collection g11, g1,2, * * -, g1,« such that the collection &4, g1,1, * - *,
81,4y P10, P11, -+ ¢, B, satisfies conditions analogous to conditions
(1), (2) and (3) to be satisfied by &g 1, ka2, - - - , ha2,s. We note that the
closure of g1,; (2=<7<u) is a subset of k1 +ki2+ - - - +5110.
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In a manner similar to that in which k1 +hk12+ « - - +F1,00 Was
replaced by ki+gia+ - - - +g1,u+ P10, we replace b+ - - - Fhi0
by hu-+gui+ - +guothe, - - and hewmt - - +he (9Sm

§18) by ht—m'l"gt—m,l'l" ct +gt—-m,‘w+ht°

Let g:,0 be the fourth element of g;,, gie, - - -, gi,» which follows
all of these elements that intersect 41,:15. We note that g;,o, the three
domains immediately preceding g;,o, and the three domains immedi-
ately following g; o are each a subset of %44 of diameter less than
62/1 00.

In the manner described above, replace g1,04+ - - * +hio+bu+ - - -
+gu,0 by glo+hia+ - - - +hi+gi0; replace ghio+ - -+ 48,0 by

by et - - ko +gho; - - - and replace g{_mo+ - - - +glo by
Byt + - - +hi u+his The closure of ks 2+ - - + +hi,, is a subset of
hi,a+ - -+ +hig, - - - and the closure of ks,n+ - - - +hs,uthiais a
subset of %i,emys+ - -+ +hi10. Consecutive elements of ks, %32,
-« -, k. may be combined in a manner previously described so as
to form a collection H; of connected domains he 1, k2,2, - + - , ka2, satis-

fying conditions (1), (2), (3), (4), (5), (6) and (7).

Description of simple closed curve J. For each positive integer 4
greater than one, we define a collection H; of connected domains
Rig, Big, + - -, ki satisfying conditions analogous to those satisfied
by H; where €; is a positive number less than one one-hundredth the
diameter of any connected set in H*, intersecting h;_,; and hi_a,jie.
We shall show that the common part J of H*, Hg¥, - - - is a simple
closed curve that does not separate S.

As the closure of H*, is a connected subset of H* (condition 7)
and as each k;,; contains an element of H;; (condition 6), then Jis a
nondegenerate continuum. This continuum does not separate space
because the complement of each H,* is connected.

To show that J is a simple closed curve, we shall show that any
pair of points P, Q of J separates it. Suppose that k;,p; and k; ¢, are
elements of k; 1, * - -, hi,» that contain P and Q respectively. For con-
venience in notation, we shall assume that it is H(z; P;, Q;) that
covers the closure of H(+1; Psy1, Qiy1) and that it is H(s; Qs Ps)
that covers the closure of H(4+1; Qiy, Piy). If Jpg is the
common part of H(1; Pi, Qi), H(2; Ps, @), - - -, we find that J is
the sum of two continua Jpq and J¢p which have only P and Q in
common.

Hence, the assumption that an arc separates S leads to the conclu-
sion that some simple closed curve does not.
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