
A THEOREM ON ARBITRARY /-FRACTIONS 

H. S. WALL 

1. Introduction. We consider a /-fraction 

1 
2 (ap * 0), 

ax 
bi + z 2 (1.1) a2 

b2 + z - #3 + 2 — 

in which the coefficients ap and &p are any complex numbers, the ap 

being different from zero, and z is a complex parameter. The system 
of linear equations 

— ap-ixp-i + (bp + z)xp — apXp+i = 0, 

p = 1, 2, 3, • • • ; a0 = 1, 

can be solved for #2, #3, #4, • * • uniquely in terms of arbitrarily 
chosen initial values xo and Xi. We denote by Xp{z) and Yp{z) the 
solutions corresponding to JCO= — 1, #1 = 0 and #0 = 0, #i = l, re
spectively: Xo(s) = - 1, Xi(z) = 0, Y0(z) = 0, Fi(«) = 1. Then 
Xp+i(z)/Yp+i(z) is the pth approximant of the /-fraction, and we 
have the determinant formula 

(1.3) Xp+1(z)Yp(z) - Xp(z)Yp+1(z) = l/a9, p = 0, 1, 2, • • • . 

The following theorem holds. 

THEOREM OF INVARIABILITY. If the series 

(1.4) f;i*,(*)h £ |F ,WI* 
P = I 33=1 

converge for a single value of the parameter z, then these series converge 
uniformly over every bounded domain of z. 

This theorem was proved by Hellinger and Wall [3].1 The uniform
ity of the convergence was not explicitly mentioned, but is contained 
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1 Numbers in brackets refer to the Bibliography at the end of the paper. 
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in the fact that the sums ]C?-i|f*>|2 °f [3, p. 121] are uniformly 
bounded over every finite domain of z*. 

In the present note we have derived some consequences of the 
above theorem. It will be convenient to make the following definition. 

DEFINITION. The determinate case or the indeterminate case is said 
to hold for the /-fraction (1.1) according as at least one of the series 

00 00 

(1-5) £ | X , ( 0 ) h E |F,<0) |2 

diverges, or both of these series converge, respectively. 
We shall prove that if the indeterminate case holds for the /-frac

tion, and if the /-fraction converges for a single value of z, then it 
represents a meromorphic function of z and converges except at the 
poles of this function. Hamburger [2] proved this theorem for /-frac
tions with real coefficients, and closely related theorems were proved 
by Hellinger and Wall [3] for /-fractions in which the ap are real and 
I(bp) èO, and by Dennis and Wall [l] for positive definite /-fractions. 
If, in particular, bp = 0, £ = 1, 2, 3, • • • , then, if we drop the factor z, 
the /-fraction can be thrown into the form 

(w = z2). 
1 

(1.6) k2 + 

kZW + — ; 

We show that if the series 

(1.7) £ *fp+i, E *»p+i(*« + k, + • • • + k2p)
2 

are absolutely convergent and 

(1.8) lim | k2 + * H + k2p\ = oo, 
p as 00 

then the continued fraction (1.6) converges to a meromorphic func
tion of w or else diverges to oo for every w. If the series (1.7) are 
absolutely convergent and (1.8) fails to hold, then the continued frac
tion diverges by oscillation for every w. This theorem was proved by 
Hamburger [2] for the case where the kp are real, k2P7^0t and k2p+i>Q. 

2. Four entire functions. We define four polynomials Un(z), Vn(z) 
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Pn{%), Qn(z) by means of the following formulas: 

Un(z) - an[Yn(0)Xn+1(z) - Fn+1(0)Xn(s)], 

(2 1) Vn{%) = ^ ( ° > F * " « ~ y^i(0)7n(z)]9 ^ _ i 2 3 

pn(») = a n [x w (o)x n + 1 ( 2 ) - x n + 1 (o )x w (* ) ] , w » » » • • • • 
Q»(s) = an[Xn(0)Yn+1(z) - Xn+1(0)Yn(z)l 

We find with the aid of the determinant formula (1.3) that these 
polynomials satisfy the identity 

( 2 . 2 ) Pn(z)Vn(Z) - Qn(z)Un(z) S 1. 

We now put Xk = Xk(z), p = n + l, in (1.2), and get 

an+1Xn+2(z) = {bn+i + z)Xn+i(z) - anXn(z). 

We multiply both members of this identity by Xw+i(0), subtract 
an+iXn+2(Q)Xn+i(z) from both members, and obtain 

#n+l 
[Xn+1(0)Xn+2(z) - Xn+2(0)Xn+1(z)] 

= [{bn+iXn+1(0) - an+1Xn+i(0)} +zXB+1(0)]XB+i(2) 

- anXn+1(0)Xn(z) 

= an[Xn(0)Xn+i(z) -Xn+1(0)Xn(z)] + «XH.1(0)jrH.i(«). 

Hence, by (2.1), we have the first of the following relations: 

Pn+l(z) = P„(z) + zXn+1(0)Xn+1(z), 

Qn+i(z) = Q»(«) + zX„+1(0)FB+1(z), 

Un+i(z) = ü.(«) + zFB+1(0)XB+1(z), 

Vn+i(z) = FB(z) + zFB+1(0)FB+1(z). 
The others may be obtained in a similar way. From these relations 
we now obtain immediately the following formulas. 

K+l 
Pn+l(z) = + z £ XP(0)XP(Z), 

p-2 

(2.3) 

71+1 

GH.I(S) - - i + *E*p(o)r,(*)f 

w+1 

p-2 

n+1 

FB+1(z) = z + z Z F,(0)F,(«). 
j>=2 
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By the theorem of invariability (§1) and formulas (2.2), (2.3) we 
find at once by Schwarz's inequality that the following theorem is 
true. 

THEOREM 2.1. Let the indeterminate case hold for the J-fraction (1.1). 
Then there exist four entire functions u(z)> v(z)> p(z), q(z) such that 

(2.4) p(z)v(z) - q(z)u(z) = 1, 

and such that 

lim Un(z) — u(z)y lim Vn(z) = v(z), 

(2.5) 
lim Pn(z) = p(z), lim Q„(z) = q(z), 

uniformly over every bounded region of the z-plane. 

3. Convergence theorem for /-fractions. By means of (2.1) and 
(1.3) we find that 

Xn+1(z) « Xn+1(0)Un(z) - Fw+1(0)Pn(z), 

Fn+i(s) = Xn+1(O)FW(0) - Fw+1(0)Qn(s). 

Let 5n = -Srw+i(0)/Fn+i(0). If limn™005n = ,̂ a finite number, and if the 
indeterminate case holds for the /-fraction, it then follows from Theo
rem 2.1 and the relations (3.1) that 

(3.2) lim ——— = su(z) - p(z), lim ———- = sv(z) - q(z), 
n=oe y n + i (U) n=oo y w + 1 ( i ) ; 

uniformly over every finite region. Since, by (2.4), 

[sv(z) — q(z)]u(z) — [sw(s) — p(z)]v(z) = 1, 

it follows that the limits (3.2) cannot vanish for one and the same 
value of 0. Therefore, for every value of z, 

X n + l ( s ) SU(z) - ƒ>(*) 
J i m — ? 

n=co F n + i ( 2 ) 5Î)(2) ~ Ç(s) 

which is a meromorphic function of z, or else is 00 for every z. If 
limn-.ooSn = °°, then, for every value of z, 

Xn+i(z) u(z) 
l im 
n=oo Yn+l(z) V(Z) 

which again is a meromorphic function of z or else is 00 for every z. 
If the sequence {sn} has more than one limit-point, let limn'-ooSn' = $'1 
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limn"-»*»*" =.s", s'ï^s". Then, if s' and s" are both finite, 

Xn'+l(2) S'u(z) — p(z) 
llm = , 

n'««o Yn>+i(z) s'v(z) - q(z) 
r Xn"+1« *"«(«) - P{Z) 
hm = • 

n"«oo Fw//+i(2;) s"fl(s) — q(z) 
These are unequal for every z inasmuch as 

(s'u - p)(s"v - q) - (*"* - £)(*'*; - (?) = s' - *" * 0, 

and therefore the /-fraction diverges by oscillation for every z. The 
same evidently holds if one of the limits s', s" is 00. From these con
siderations we conclude that the following theorem is true. 

THEOREM 3.1. Let the indeterminate case hold for the J-fraction (1.1). 
If the J-fraction converges for a single value of z, then it represents a 
meromorphic f unction of z and converges except at the poles of that func
tion. In terms of the entire functions of §2, 

,. Xn+l(z) Su(z) — p(z) u(z) 
lim = or 

according as 

Yn+1(z) sv(z) - q(z) v(z) 

X»+i(0) 
lim _— — $ (finite) or *>, 
n=oo Fn + i (0) 

respectively. If there is a single value of z for which neither the J-fraction 
nor its reciprocal converges, then the J-fraction diverges by oscillation 
for every value of z. 

4. Convergence theorem for S-fractions. A J-fraction (1.1) in 
which the coefficients bp are all equal to zero is called a Stieltjes frac
tion or S-fraction : 

1 
— 2 

2 
# 2 

(4.1) * -
z — 

This has the property that its even part is a /-fraction in the varia
ble z2, multiplied by the factor z, namely, 
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2 2 ( 0 1 0 2 ) 2 

z — ai 
2 . 2, ( 0 3 0 4 ) 2 

(4.2) z - (02 + 03) -

s2 - (a4 + 06) -

If we divide both (4.1) and (4.2) by z, and then make the change of 
variable z2=*w, these take the form 

0i 
w 2 

(4.3) a2 1 -
w — 

2 (010 2) 2 

W d\ ' 
2 2 

w — (a2 + 03) — 
(0 3 a 4 ) 2 

2 2 
w — (04 + 05) — 

and 

(4.4) 

respectively. We shall apply Theorem 3.1 to the /-fraction (4.4) in 
order to obtain a convergence theorem for the 5-fraction (4.3). 

Let Gp(w) and Hp{w) denote the pth numerator and denominator 
of (4.3), and let Ap(w) and Bp{w) denote the pth numerator and de
nominator of (4.4). Then we have 

(4.5) G2p(w) = Ap(w), H2p(w) = Bp{w\ p = 0, 1, 2, • • • . 

Let 

. 2 

c i = a>xa2, Ô I = — #1, 
* 2 2 

C2 = 0304» O2 = = — 0 1 — 02» 

(4.6) 2 2 
fft = Ö6ÖJ, 0 8 = — 04 — Ö5, 
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so that (4.4) becomes 

2 

öx+ W 2 
(4.7) x , ^ 2 

02 + W 
Ô3 + W — 

From (4.6) we readily find by mathematical induction that 

(4-8) a ^ 1 = = ~ ^ T a2* = — B ^ - 1 * = ' '2 '3 '"' 
and 

(4.9) Bp(0)?*0, p= 1 ,2,3, •<• . 

Conversely, if (4.7) is a /-fraction such that (4.9) holds, then it is 
the even part of an 5-fraction (4.3) whose partial numerators are 
given by (4.8). 

The odd numerators and denominators of the S-fraction (4.3) can 
be expressed in terms of the numerators and denominators of (4.7) by 
means of the formulas 

Bp^(0)Ap(w) - Bp(OMp_i(«0 

, N
 G^l{W) = B^fi) ' 

(4.10) p = 1, 2, 3, • • • . 
' Bp^(0)Bp(w) - Bp(0)Bp^(w) 

H2p-l(w) = > 
£ P - I ( 0 ) 

These may be verified immediately by means of the recurrence for
mula G2p{w) =G2p-i(w)— a2p-i2G2p-2(w), and the like relation for 
H2p(w), if we use (4.5) and (4.8). I t will be observed that the first two 
polynomials (2.1), formed for the /-fraction (4.7), differ from (4.10) 
only by a constant factor: 

(4.11) ~ r r ^ l T T V £ = 1 , 2 , 3 , - . . . 
H2p-i(w) Vp(w) 

If we make the substitution 

2 1 
(4.12) ap = - — — , p = 1, 2, 3, • • • ; t i = 1, 

in (4.3), the latter becomes 
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1 

1 
kiW -\ 

(4.13) *, + - i 
kzW + 

The pth numerator and denominator of (4.13) are 

kik2 • • • kpGp(w) and kik2 • • • kpHp(w), 

respectively. 
We shall now prove the following theorem. 

THEOREM 4.1. Let ki, k2f kz, • • • be complex numbers different from 
zero such that the series 

(4.14) £ k2p+1, £ k2p+1(k2 + h + • • • + k2p)
2 

are absolutely convergent, and let 

(4.15) lim (#2 + h + • • • + k2p) = oo. 

Then, /or mcA ua/we <?ƒ w, /Ae S-fraction (4.13) converges, or else its 
reciprocal converges to the value 0. If the series (4.14) converge absolutely 
and (4.15) jfai/s /# hold, then neither the S-fr action nor its reciprocal 
converges f or a single value of w. If the S-fr action converges f or one value 
of w, then its value is a meromorphic function of w to which it converges 
uniformly over every bounded closed region containing none of the poles 
of the function. 

PROOF. The polynomials Xp+i(w) and Yp+i(w) for the /-fraction 
(4.7) are given by 

Ap(w) Bp(w) 
Xp+1(w) = ; Fp+i(«0 = 

G\G2 * * ' <Tp 0*10"2 ' * * Gp 

By (4.5), (4.6) and (4.12) we then obtain 

I Xp+1(0) |2 = J G2p(0) • ktk2 • • • k2p |
2- J k2p+1 J, 

I Yp+1(0) |2 = J H2p(0) • hk2 • • • k2p J • J k2p+1 J. 
Since fak2 • • • kpGp(w) and Aifo • • • kpHp(w) are the £th numerator 
and denominator, respectively, of (4.13), we readily find by mathe
matical induction that 

G2p(0) • kxk2 • • • k2p = k2 + *4 + • • • + fop, B2p(0) • &1&2 • • • fap = 1, 
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and consequently 

I x*.i(o) I2 = I kiP+1(k2 + h + • • • + k2py I, 
| r ,+ i (o ) | » = | * * n | . 

From Theorem 3.1 we therefore conclude that when the series (4.14) 
converge absolutely, then, by (4.11): 

G2p-i(w) u(w) 
lim 
P=OO H2P-i(w) v(w) 

where u(w) and v(w) are entire functions, provided v(w) 5^0. Inasmuch 
as u(w) 5^0 when v(w) = 0, we conclude that for any w, the sequence of 
odd approximants of the S-fraction, or else the sequence of reciprocals 
of these approximants, must converge. By Theorem 3.1 and (4.5), 

G2p(w) u(w) 
lim = 
P - « E2p{w) v(w) 

if and only if limp^\Ap(0)/Bp(0)\=limp^\Xp+1(0)/Yp+1(0)\ = 00. 
But, by (4.16), 

^ + 1 ( 0 ) 

Fp+ i (0) 
- \k% + h + • • • + k 2p\ 

Therefore, if (4.15) holds, then the 5-fraction or its reciprocal con
verges. If (4.15) fails to hold, then the 5-fraction and its reciprocal 
diverge for every w. If the 5-fraction converges for a single value of w, 
then its value is the meromorphic function u(w)/v(w). The conver
gence is clearly uniform over every closed bounded region containing 
none of the poles of this function. 
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