
RECIPROCALS OF /-MATRICES 

H. S. WALL 

1. Introduction. We consider /-matrices 

J = ('*«)» JPQ = 0 for | p - q | ^ 2, ypi> = £p, 

ip+i,p — ip.p+i = — öp T^ o, 

such that 

(1.1) I[J(%, #)] = X I(bp) | ^ |2 - X) ^ ( ^ ) ( ^ ^ + i + «pSp+i) ^ 0 

for all #p for which the sums converge. These are the /-matrices as­
sociated with a positive definite /-fraction [4, 5, l ] . 1 Let Xp(z) and 
Yp(z) denote the solutions of the system of linear equations 

(1.2) — dp-iXp-i + (bp + z)Xp — dpXp+i = 0, p = 1, 2, 3, • • • ; ̂ o = 1 , 

under the initial conditions #o= — 1, #1 = 0 and #0 = 0, #i = l, respec­
tively. We shall prove that when at least one of the series 

00 00 

(1.3) EI**(o)|2, E |r,(o) |» 
p = l 2>=1 

diverges, then the matrix Z + z J has a unique bounded reciprocal for 
I(z) > 0 , and that when both the series (1.3) converge then the matrix 
J+zI has infinitely many different bounded reciprocals. This theo­
rem was proved by Hellinger [2] for the case where the coefficients 
ap and bp are all real. 

2. Reciprocals of an arbitrary /-matrix. The general right recipro­
cal of J+zI is (ppq) where pi,q, g = l, 2, 3, • • • , are arbitrary func­
tions of zy and [3, p. 116] 

tPi,q(*)Yp(z), p = 1, 2, 3, • • • , q; 

(2.1) Ppq(z) - <PUZ)YP(Z) + Xq(z)Yp(z) - Xp(z)Yq(z), 

' P = ^ + 1, q + 2, q + 3, • • • . 

We shall say that the determinate case or the indeterminate case holds 
for the /-matrix according as a t least one of the series (1.3) diverges 
or both of these series converge, respectively. In the indeterminate 
case, both of the series 
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00 00 

(2-2) EI*,«K EI^Wl1 

p = l P—l 

converge for every value of z [3, p. 120]. Hence if the functions 
pi,q{z) are chosen such that the series Yl\ Pi.Q(Z)12 converges, it fol­
lows by (2.1) and Schwarz's inequality that the double series 
^ I P P S O * ) ! 2 converges and therefore the matrix (ppq(z)) is bounded. 
If, in particular, 

PiM) = Yq(z)f(z) - Xq{z), 

then 

Xq(z)\ 

(2.3) ppq{z) = 

YP(z)Yq(z) ( ƒ(«) - - ^ ) , £ = 1, 2, • • • , q; 

( Xp(z)\ 
YP(z)Yq(z) (ƒ(*) - - î ^ ) , p = g + l,q + 2, • • • , 

\ Fp(2f)/ 
so that the matrix (ppq) is symmetric. If, for example, ƒ(z) is an entire 
function, then the matrix (ppq) given by (2.3) is bounded in the inde­
terminate case for all values of z. Hence we have the following theo­
rem. 

THEOREM 2.1. In the indeterminate case, the J-matrix J+zI has 
infinitely many different reciprocals (pPq(z)) which are bounded for all 
values of z. 

We have not used the condition (1.1), so that this theorem holds 
for arbitrary /-matrices. 

3. The determinate case. We suppose now that (1.1) holds. Then 

(3.1) Pp = IQ>p) è O , £ = 1, 2, 3, • • • , 

and there exist constants gp such that if ap = I{ap) then 

(3.2) ap = J M P + I ( 1 - gp-ùgp, 0 = gP-i = 1, p = 1, 2, 3, • • • . 

Conversely, if (3.1) and (3.2) hold, then (1.1) holds [5, p. 91]. 
For a fixed positive integer n, let £i, £2, • • • , £n be arbitrary real 

numbers. Let (ppq) be any right reciprocal of 7 + s / , so that, if we now 
take öo = 0, 

-~ aP-ipP-i,q + (bp + z)pp,q — appp+i,q = ôp,q, 

p} q = 1, 2, 3, • • • , 

where dp,q = 0 or 1 according as p ?*q or p = q, respectively. On multi-
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plying (3.3) by %q and summing over q from 1 to n we obtain 

(3.4) — ap-iT)p-i + (bp + z)rjp — apnjp+i = %P1 

where 

n 
(3.5) rjp s= 2J Pj)3^. 

«-=1 

We now suppose (ppq) is symmetric, so that (2.3) holds for some func­
tion ƒ (0). We note that 

ünPn ,q 
W = 

Pn+l,q 

is independent of q for g = l , 2, 3, • • • , n: 

Yn(z)f(z) - Xn(z) xf N Xw+1(0)^ - anXn(z) 
(3.6) w = an ; f(z) = 

Yn+i(z)f(z) - Xn+i(z) Yn+i(z)w - anYn(z) 
For a fixed z with 7(0) > 0 , the transformation 

Xn+X(z)w - anXw(0) 
* = 

Yn+i(z)w - anFw(0) 

maps the half-plane I(w)èz(3n+ign upon a circular region Kn(z) (cf. 
[ l ]) . Hence we see by (3,6) that the value of the function f(z) is in 
Kn(z) if and only if I(w) <z(3n+ign- If the latter inequality holds then 
[ l . p . 2 6 1 ] 

Ö"* Pn + y - J ( — I ^ &g—1 + % where y « 7(0) > 0, 

or 
2 

(3.7) / ( ^ ) £ 0.(1 - fr-i). 

Now 
2 

__ ö n 

#nPn+l,« "" Pn,q» 
W 

On multiplying this by £ff and summing over q from 1 to n, we get 

2 

(3 . 8) #n?7n-H = Vn* 
w 
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We now multiply (3.4) by rjp, sum over p from 1 to n, and eliminate 
the quantity anrjn+irin by (3.8). This gives immediately the relation 

2 n n—1 n n 

Z) (bP + *) I Vp |2 ~ ]£ <*l>(Mi>+l + flltfp+l) = — Un I2 + S M P -

If we consider only the imaginary part and make use of the inequality 
(3.7) and the relations (3.2) we then obtain (cf. [l, p. 258]) 

vt, I Vp I2 + 2 I 08,(1 - g9-0)llEVp - O W P ) 1 ' 2 ^ ! I2 

(3.9) ~ l I1 

+ È WGfc) ^ 0. 
P=I 

Hence, in particular, 

(3.10) y£,\vp\2+ t y w so. 
Î>«=1 p=*l 

This holds under the assumption that the value of the function f(z) 
is in the circular region 2C»(s). 

Turning now to the quadratic form 

n n 

^n(£, £) = ZJ Ppq(z)£p%q = ZJ ^PVPI 
p , « - I p«=l 

we have, by Schwarz's inequality and (3.10), 

I * . ( * , i) I2 -
12 1 . 2 

Therefore, 

iA(fcöi f£—è£-i*»ft,öi, 

or 

(3.11) |*.tt,ö|£ —E*,. 
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This holds for any particular values of n and z, 7(z)>0, such that 
thevalueof / (z) is in7£ n (z) .Now [l9iS],Ki(z)DK%(z)DKt(z)D 
and there is at least one function ƒ(z) which is analytic for I(z) > 0 
whose values are in all the circles Kn(z). Hence we conclude that the 
following theorem is true. 

THEOREM 3.1. If (1.1) holds, then the matrix J+zI has at least one 
reciprocal which is bounded for l(z)>0. 

We shall now prove the following theorem. 

THEOREM 3.2. 7/(1.1) holds, then, in the determinate case, the matrix 
J+zI has just one reciprocal which is bounded for all z for which 
I (* )>0 . 

PROOF. In the determinate case at least one of the series (2.2) di­
verges; and since [l, p. 262, formula (3.4)] 

(3.12) 
XP(z) 

YP(z) 
for y = I(z) > 0, 

it follows that the second of the series (2.2) diverges for 7(z)>0. 
Therefore [l , p. 263, formula (3.12)], the radius rp{z) of the circle 
Kp(z) tends to 0 as p tends to oo. This implies that there is only one 
function f0(z) which for I(z) > 0 has its values in all the circles Kp(z). 
The reciprocal (ppq) of J+zI given by (2.3) with/(z) =/o(z) is bounded 
for 7(z)>0. I t is required to show that any other reciprocal is un­
bounded for a t least one z in I(z) > 0. 

We consider an arbitrary reciprocal of J+zI in I(z) > 0 . This must 
be given by (2.3). If f(z) ^fo(z) for I{z) > 0 , there must exist a value 
z=Zo, 7(s0) > 0 , such that 

/(so) -
Xp(z0) 

YP(zo) 
è k, 

for all sufficiently large values of p, k being a positive constant. This 
follows from the fact that Xp(zo)/Yp(z0) is in the circle 7£p_i(z0). Hence 
by (2.3), \ppq(z0)\

2^\ Yq(zo)\2k*-\ Yp(z0)\\ for each q and for all 
sufficiently large values of p. Since | Fg(z0)| > 0 by (3.12), and since 
the series X) I ^PO^O) | 2 is divergent, it follows that the series 

El 
jp-i 

PPq(Zo) 

is divergent. Therefore the matrix (ppq(zo)) is unbounded. 
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