RECIPROCALS OF J-MATRICES

H. S. WALL

1. Introduction. We consider J-matrices

$$
\begin{aligned}
J=\left(i_{p q}\right), \quad j_{p q} & =0 \quad \text { for } \quad|p-q| \geqq 2, \quad j_{p p}=b_{p}, \\
j_{p+1, p} & =j_{p, p+1}=-a_{p} \neq 0,
\end{aligned}
$$

such that
(1.1) $I[J(x, \bar{x})]=\sum I\left(b_{p}\right)\left|x_{p}\right|^{2}-\sum I\left(a_{p}\right)\left(x_{p} \bar{x}_{p+1}+\bar{x}_{p} x_{p+1}\right) \geqq 0$
for all x_{p} for which the sums converge. These are the J-matrices associated with a positive definite J-fraction $[4,5,1] .{ }^{1}$ Let $X_{p}(z)$ and $Y_{p}(z)$ denote the solutions of the system of linear equations
(1.2) $-a_{p-1} x_{p-1}+\left(b_{p}+z\right) x_{p}-a_{p} x_{p+1}=0, p=1,2,3, \cdots ; a_{0}=1$,
under the initial conditions $x_{0}=-1, x_{1}=0$ and $x_{0}=0, x_{1}=1$, respectively. We shall prove that when at least one of the series

$$
\begin{equation*}
\sum_{p=1}^{\infty}\left|X_{p}(0)\right|^{2}, \quad \sum_{p=1}^{\infty}\left|Y_{p}(0)\right|^{2} \tag{1.3}
\end{equation*}
$$

diverges, then the matrix $J+z I$ has a unique bounded reciprocal for $I(z)>0$, and that when both the series (1.3) converge then the matrix $J+z I$ has infinitely many different bounded reciprocals. This theorem was proved by Hellinger [2] for the case where the coefficients a_{p} and b_{p} are all real.
2. Reciprocals of an arbitrary J-matrix. The general right reciprocal of $J+z I$ is ($\rho_{p q}$) where $\rho_{1, q}, q=1,2,3, \cdots$, are arbitrary functions of z, and [3, p. 116]

$$
\rho_{p q}(z)=\left\{\begin{array}{l}
\rho_{1, q}(z) Y_{p}(z), \quad \begin{array}{l}
p=1,2,3, \cdots, q ; \\
\rho_{1, q}(z) Y_{p}(z)+X_{q}(z) Y_{p}(z)-X_{p}(z) Y_{q}(z) \\
p=q+1, q+2, q+3, \cdots
\end{array} . \tag{2.1}
\end{array}\right.
$$

We shall say that the determinate case or the indeterminate case holds for the J-matrix according as at least one of the series (1.3) diverges or both of these series converge, respectively. In the indeterminate case, both of the series
${ }^{1}$ Numbers in brackets refer to the Bibliography at the end of the paper.

$$
\begin{equation*}
\sum_{p=1}^{\infty}\left|X_{p}(z)\right|^{2}, \quad \sum_{p=1}^{\infty}\left|Y_{p}(z)\right|^{2} \tag{2.2}
\end{equation*}
$$

converge for every value of z [3, p. 120]. Hence if the functions $\rho_{1, q}(z)$ are chosen such that the series $\sum\left|\rho_{1, q}(z)\right|^{2}$ converges, it follows by (2.1) and Schwarz's inequality that the double series $\sum\left|\rho_{p q}(z)\right|^{2}$ converges and therefore the matrix $\left(\rho_{p q}(z)\right)$ is bounded. If, in particular,

$$
\rho_{1, q}(z)=Y_{q}(z) f(z)-X_{q}(z),
$$

then
(2.3) $\rho_{p q}(z)=\left\{\begin{array}{lr}Y_{p}(z) Y_{q}(z)\left(f(z)-\frac{X_{q}(z)}{Y_{q}(z)}\right), & \quad p=1,2, \cdots, q ; \\ Y_{p}(z) Y_{q}(z)\left(f(z)-\frac{X_{p}(z)}{Y_{p}(z)}\right), & p=q+1, q+2, \cdots,\end{array}\right.$
so that the matrix $\left(\rho_{p q}\right)$ is symmetric. If, for example, $f(z)$ is an entire function, then the matrix ($\rho_{p q}$) given by (2.3) is bounded in the indeterminate case for all values of z. Hence we have the following theorem.

Theorem 2.1. In the indeterminate case, the J-matrix $J+z I$ has infinitely many different reciprocals $\left(\rho_{p q}(z)\right)$ which are bounded for all values of z.

We have not used the condition (1.1), so that this theorem holds for arbitrary J-matrices.
3. The determinate case. We suppose now that (1.1) holds. Then

$$
\begin{equation*}
\beta_{p}=I\left(b_{p}\right) \geqq 0, \quad p=1,2,3, \cdots, \tag{3.1}
\end{equation*}
$$

and there exist constants g_{p} such that if $\alpha_{p}=I\left(a_{p}\right)$ then

$$
\begin{equation*}
\alpha_{p}^{2}=\beta_{p} \beta_{p+1}\left(1-g_{p-1}\right) g_{p}, \quad 0 \leqq g_{p-1} \leqq 1, p=1,2,3, \cdots \tag{3.2}
\end{equation*}
$$

Conversely, if (3.1) and (3.2) hold, then (1.1) holds [5, p. 91].
For a fixed positive integer n, let $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ be arbitrary real numbers. Let ($\rho_{p q}$) be any right reciprocal of $J+z I$, so that, if we now take $a_{0}=0$,

$$
\begin{align*}
&-a_{p-1} \rho_{p-1, q}+\left(b_{p}+z\right) \rho_{p, q}-a_{p} \rho_{p+1, q}=\delta_{p, q} \\
& p, q=1,2,3, \cdots, \tag{3.3}
\end{align*}
$$

where $\delta_{p, q}=0$ or 1 according as $p \neq q$ or $p=q$, respectively. On multi-
plying (3.3) by ξ_{q} and summing over q from 1 to n we obtain

$$
\begin{equation*}
-a_{p-1} \eta_{p-1}+\left(b_{p}+z\right) \eta_{p}-a_{p} \eta_{p+1}=\xi_{p} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{p}=\sum_{q=1}^{n} \rho_{p q} \xi_{q} \tag{3.5}
\end{equation*}
$$

We now suppose ($\rho_{p q}$) is symmetric, so that (2.3) holds for some function $f(z)$. We note that

$$
w=\frac{a_{n} \rho_{n, q}}{\rho_{n+1, q}}
$$

is independent of q for $q=1,2,3, \cdots, n$:

$$
\begin{equation*}
w=a_{n} \frac{Y_{n}(z) f(z)-X_{n}(z)}{Y_{n+1}(z) f(z)-X_{n+1}(z)}, \quad f(z)=\frac{X_{n+1}(z) w-a_{n} X_{n}(z)}{Y_{n+1}(z) w-a_{n} Y_{n}(z)} . \tag{3.6}
\end{equation*}
$$

For a fixed z with $I(z)>0$, the transformation

$$
t=\frac{X_{n+1}(z) w-a_{n} X_{n}(z)}{Y_{n+1}(z) w-a_{n} Y_{n}(z)}
$$

maps the half-plane $I(w) \geqq \beta_{n+1} g_{n}$ upon a circular region $K_{n}(z)$ (cf. [1]). Hence we see by (3.6) that the value of the function $f(z)$ is in $K_{n}(z)$ if and only if $I(w) \geqq \beta_{n+1} g_{n}$. If the latter inequality holds then [1, p. 261]

$$
\beta_{n}+y-I\left(\frac{a_{n}^{2}}{w}\right) \geqq \beta_{n} g_{n-1}+y, \quad \text { where } \quad y=I(z)>0
$$

or

$$
\begin{equation*}
I\left(\frac{a_{n}^{2}}{w}\right) \leqq \beta_{n}\left(1-g_{n-1}\right) \tag{3.7}
\end{equation*}
$$

Now

$$
a_{n} \rho_{n+1, q}=\frac{a_{n}^{2}}{w} \rho_{n, q} .
$$

On multiplying this by ξ_{q} and summing over q from 1 to n, we get

$$
\begin{equation*}
a_{n} \eta_{n+1}=\frac{a_{n}^{2}}{w} \eta_{n} . \tag{3.8}
\end{equation*}
$$

We now multiply (3.4) by $\bar{\eta}_{p}$, sum over p from 1 to n, and eliminate the quantity $a_{n} \eta_{n+1} \bar{\eta}_{n}$ by (3.8). This gives immediately the relation

$$
\sum_{p=1}^{n}\left(b_{p}+z\right)\left|\eta_{p}\right|^{2}-\sum_{p=1}^{n-1} a_{p}\left(\eta_{p} \bar{\eta}_{p+1}+\bar{\eta}_{p} \eta_{p+1}\right)=\frac{a_{n}^{2}}{w}\left|\eta_{n}\right|^{2}+\sum_{p=1}^{n} \xi_{p} \bar{\eta}_{p}
$$

If we consider only the imaginary part and make use of the inequality (3.7) and the relations (3.2) we then obtain (cf. [1, p. 258])

$$
\begin{align*}
y \sum_{p=1}^{n}\left|\eta_{p}\right|^{2} & +\sum_{p=1}^{n-1}\left|\left(\beta_{p}\left(1-g_{p-1}\right)\right)^{1 / 2} \eta_{p}-\left(\beta_{p+1} g_{p}\right)^{1 / 2} \eta_{p+1}\right|^{2} \tag{3.9}\\
& +\sum_{p=1}^{n} \xi_{p} I\left(\eta_{p}\right) \leqq 0
\end{align*}
$$

Hence, in particular,

$$
\begin{equation*}
y \sum_{p=1}^{n}\left|\eta_{p}\right|^{2}+\sum_{p=1}^{n} \xi_{p} I\left(\eta_{p}\right) \leqq 0 \tag{3.10}
\end{equation*}
$$

This holds under the assumption that the value of the function $f(z)$ is in the circular region $K_{n}(z)$.

Turning now to the quadratic form

$$
R_{n}(\xi, \xi)=\sum_{p, q=1}^{n} \rho_{p q}(z) \xi_{p} \xi_{q}=\sum_{p=1}^{n} \xi_{p} \eta_{p}
$$

we have, by Schwarz's inequality and (3.10),

$$
\begin{aligned}
\left|R_{n}(\xi, \xi)\right|^{2} & =\left|\sum_{p=1}^{n} \xi_{p} \eta_{p}\right|^{2} \leqq \frac{1}{y} \sum_{p=1}^{n} \xi_{p}^{2} \cdot y \sum_{p=1}^{n}\left|\eta_{p}\right|^{2} \\
& \leqq \frac{1}{y} \sum_{p=1}^{n} \xi_{p}^{2}\left(-\sum_{p=1}^{n} \xi_{p} I\left(\eta_{p}\right)\right) \\
& =\frac{1}{y} \sum_{p=1}^{n} \xi_{p}^{2} \cdot\left(-I\left[R_{n}(\xi, \xi)\right]\right) .
\end{aligned}
$$

Therefore,

$$
\left|R_{n}(\xi, \xi)\right|^{2} \leqq \frac{1}{y} \sum_{p=1}^{n} \xi_{p}^{2} \cdot\left|R_{n}(\xi, \xi)\right|
$$

or

$$
\begin{equation*}
\left|R_{n}(\xi, \xi)\right| \leqq \frac{1}{y} \sum_{p=1}^{n} \xi_{p}^{2} \tag{3.11}
\end{equation*}
$$

This holds for any particular values of n and $z, I(z)>0$, such that the value of $f(z)$ is in $K_{n}(z)$. Now [1, §3], $K_{1}(z) \supset K_{2}(z) \supset K_{3}(z) \supset \cdots$, and there is at least one function $f(z)$ which is analytic for $I(z)>0$ whose values are in all the circles $K_{n}(z)$. Hence we conclude that the following theorem is true.

Theorem 3.1. If (1.1) holds, then the matrix $J+z I$ has at least one reciprocal which is bounded for $I(z)>0$.

We shall now prove the following theorem.
Theorem 3.2. If (1.1) holds, then, in the determinate case, the matrix $J+z I$ has just one reciprocal which is bounded for all z for which $I(z)>0$.

Proof. In the determinate case at least one of the series (2.2) diverges; and since [$1, \mathrm{p} .262$, formula (3.4)]

$$
\begin{equation*}
\left|\frac{X_{p}(z)}{Y_{p}(z)}\right| \leqq \frac{1}{y} \quad \text { for } y=I(z)>0 \tag{3.12}
\end{equation*}
$$

it follows that the second of the series (2.2) diverges for $I(z)>0$. Therefore [1, p. 263, formula (3.12)], the radius $r_{p}(z)$ of the circle $K_{p}(z)$ tends to 0 as p tends to ∞. This implies that there is only one function $f_{0}(z)$ which for $I(z)>0$ has its values in all the circles $K_{p}(z)$. The reciprocal $\left(\rho_{p q}\right)$ of $J+z I$ given by (2.3) with $f(z)=f_{0}(z)$ is bounded for $I(z)>0$. It is required to show that any other reciprocal is unbounded for at least one z in $I(z)>0$.

We consider an arbitrary reciprocal of $J+z I$ in $I(z)>0$. This must be given by (2.3). If $f(z) \not \equiv f_{0}(z)$ for $I(z)>0$, there must exist a value $z=z_{0}, I\left(z_{0}\right)>0$, such that

$$
\left|f\left(z_{0}\right)-\frac{X_{p}\left(z_{0}\right)}{Y_{p}\left(z_{0}\right)}\right| \geqq k
$$

for all sufficiently large values of p, k being a positive constant. This follows from the fact that $X_{p}\left(z_{0}\right) / Y_{p}\left(z_{0}\right)$ is in the circle $K_{p-1}\left(z_{0}\right)$. Hence by (2.3), $\left|\rho_{p q}\left(z_{0}\right)\right|^{2} \geqq\left|Y_{q}\left(z_{0}\right)\right|^{2} k^{2} \cdot\left|Y_{p}\left(z_{0}\right)\right|^{2}$, for each q and for all sufficiently large values of p. Since $\left|Y_{q}\left(z_{0}\right)\right|>0$ by (3.12), and since the series $\sum\left|Y_{p}\left(z_{0}\right)\right|^{2}$ is divergent, it follows that the series

$$
\sum_{p=1}^{\infty}\left|\rho_{p q}\left(z_{0}\right)\right|^{2}
$$

is divergent. Therefore the matrix $\left(\rho_{p q}\left(z_{0}\right)\right)$ is unbounded.

Bibliography

1. J. J. Dennis and H. S. Wall, The limit-circle case for a positive definite J-fraction, Duke Math. J. vol. 12 (1945) pp. 255-273.
2. E. Hellinger, Zur Stieltjesschen Kettenbruchtheorie, Math. Ann. vol. 86 (1922) pp. 18-29.
3. E. D. Hellinger and H. S. Wall, Contributions to the analytic theory of continued fractions and infinite matrices, Ann. of Math. (2) vol. 44 (1943) pp. 103-127.
4. H. S. Wall and Marion Wetzel, Contributions to the analytic theory of J-fractions, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 373-392.
5. -, Quadratic forms and convergence regions for continued fractions, Duke Math. J. vol. 11 (1944) pp. 89-102.

Illinois Institute of Technology

