
RECIPROCALS OF /-MATRICES 

H. S. WALL 

1. Introduction. We consider /-matrices 

J = ('*«)» JPQ = 0 for | p - q | ^ 2, ypi> = £p, 

ip+i,p — ip.p+i = — öp T^ o, 

such that 

(1.1) I[J(%, #)] = X I(bp) | ^ |2 - X) ^ ( ^ ) ( ^ ^ + i + «pSp+i) ^ 0 

for all #p for which the sums converge. These are the /-matrices as
sociated with a positive definite /-fraction [4, 5, l ] . 1 Let Xp(z) and 
Yp(z) denote the solutions of the system of linear equations 

(1.2) — dp-iXp-i + (bp + z)Xp — dpXp+i = 0, p = 1, 2, 3, • • • ; ̂ o = 1 , 

under the initial conditions #o= — 1, #1 = 0 and #0 = 0, #i = l, respec
tively. We shall prove that when at least one of the series 

00 00 

(1.3) EI**(o)|2, E |r,(o) |» 
p = l 2>=1 

diverges, then the matrix Z + z J has a unique bounded reciprocal for 
I(z) > 0 , and that when both the series (1.3) converge then the matrix 
J+zI has infinitely many different bounded reciprocals. This theo
rem was proved by Hellinger [2] for the case where the coefficients 
ap and bp are all real. 

2. Reciprocals of an arbitrary /-matrix. The general right recipro
cal of J+zI is (ppq) where pi,q, g = l, 2, 3, • • • , are arbitrary func
tions of zy and [3, p. 116] 

tPi,q(*)Yp(z), p = 1, 2, 3, • • • , q; 

(2.1) Ppq(z) - <PUZ)YP(Z) + Xq(z)Yp(z) - Xp(z)Yq(z), 

' P = ^ + 1, q + 2, q + 3, • • • . 

We shall say that the determinate case or the indeterminate case holds 
for the /-matrix according as a t least one of the series (1.3) diverges 
or both of these series converge, respectively. In the indeterminate 
case, both of the series 
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00 00 

(2-2) EI*,«K EI^Wl1 

p = l P—l 

converge for every value of z [3, p. 120]. Hence if the functions 
pi,q{z) are chosen such that the series Yl\ Pi.Q(Z)12 converges, it fol
lows by (2.1) and Schwarz's inequality that the double series 
^ I P P S O * ) ! 2 converges and therefore the matrix (ppq(z)) is bounded. 
If, in particular, 

PiM) = Yq(z)f(z) - Xq{z), 

then 

Xq(z)\ 

(2.3) ppq{z) = 

YP(z)Yq(z) ( ƒ(«) - - ^ ) , £ = 1, 2, • • • , q; 

( Xp(z)\ 
YP(z)Yq(z) (ƒ(*) - - î ^ ) , p = g + l,q + 2, • • • , 

\ Fp(2f)/ 
so that the matrix (ppq) is symmetric. If, for example, ƒ(z) is an entire 
function, then the matrix (ppq) given by (2.3) is bounded in the inde
terminate case for all values of z. Hence we have the following theo
rem. 

THEOREM 2.1. In the indeterminate case, the J-matrix J+zI has 
infinitely many different reciprocals (pPq(z)) which are bounded for all 
values of z. 

We have not used the condition (1.1), so that this theorem holds 
for arbitrary /-matrices. 

3. The determinate case. We suppose now that (1.1) holds. Then 

(3.1) Pp = IQ>p) è O , £ = 1, 2, 3, • • • , 

and there exist constants gp such that if ap = I{ap) then 

(3.2) ap = J M P + I ( 1 - gp-ùgp, 0 = gP-i = 1, p = 1, 2, 3, • • • . 

Conversely, if (3.1) and (3.2) hold, then (1.1) holds [5, p. 91]. 
For a fixed positive integer n, let £i, £2, • • • , £n be arbitrary real 

numbers. Let (ppq) be any right reciprocal of 7 + s / , so that, if we now 
take öo = 0, 

-~ aP-ipP-i,q + (bp + z)pp,q — appp+i,q = ôp,q, 

p} q = 1, 2, 3, • • • , 

where dp,q = 0 or 1 according as p ?*q or p = q, respectively. On multi-
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plying (3.3) by %q and summing over q from 1 to n we obtain 

(3.4) — ap-iT)p-i + (bp + z)rjp — apnjp+i = %P1 

where 

n 
(3.5) rjp s= 2J Pj)3^. 

«-=1 

We now suppose (ppq) is symmetric, so that (2.3) holds for some func
tion ƒ (0). We note that 

ünPn ,q 
W = 

Pn+l,q 

is independent of q for g = l , 2, 3, • • • , n: 

Yn(z)f(z) - Xn(z) xf N Xw+1(0)^ - anXn(z) 
(3.6) w = an ; f(z) = 

Yn+i(z)f(z) - Xn+i(z) Yn+i(z)w - anYn(z) 
For a fixed z with 7(0) > 0 , the transformation 

Xn+X(z)w - anXw(0) 
* = 

Yn+i(z)w - anFw(0) 

maps the half-plane I(w)èz(3n+ign upon a circular region Kn(z) (cf. 
[ l ]) . Hence we see by (3,6) that the value of the function f(z) is in 
Kn(z) if and only if I(w) <z(3n+ign- If the latter inequality holds then 
[ l . p . 2 6 1 ] 

Ö"* Pn + y - J ( — I ^ &g—1 + % where y « 7(0) > 0, 

or 
2 

(3.7) / ( ^ ) £ 0.(1 - fr-i). 

Now 
2 

__ ö n 

#nPn+l,« "" Pn,q» 
W 

On multiplying this by £ff and summing over q from 1 to n, we get 

2 

(3 . 8) #n?7n-H = Vn* 
w 
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We now multiply (3.4) by rjp, sum over p from 1 to n, and eliminate 
the quantity anrjn+irin by (3.8). This gives immediately the relation 

2 n n—1 n n 

Z) (bP + *) I Vp |2 ~ ]£ <*l>(Mi>+l + flltfp+l) = — Un I2 + S M P -

If we consider only the imaginary part and make use of the inequality 
(3.7) and the relations (3.2) we then obtain (cf. [l, p. 258]) 

vt, I Vp I2 + 2 I 08,(1 - g9-0)llEVp - O W P ) 1 ' 2 ^ ! I2 

(3.9) ~ l I1 

+ È WGfc) ^ 0. 
P=I 

Hence, in particular, 

(3.10) y£,\vp\2+ t y w so. 
Î>«=1 p=*l 

This holds under the assumption that the value of the function f(z) 
is in the circular region 2C»(s). 

Turning now to the quadratic form 

n n 

^n(£, £) = ZJ Ppq(z)£p%q = ZJ ^PVPI 
p , « - I p«=l 

we have, by Schwarz's inequality and (3.10), 

I * . ( * , i) I2 -
12 1 . 2 

Therefore, 

iA(fcöi f£—è£-i*»ft,öi, 

or 

(3.11) |*.tt,ö|£ —E*,. 
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This holds for any particular values of n and z, 7(z)>0, such that 
thevalueof / (z) is in7£ n (z) .Now [l9iS],Ki(z)DK%(z)DKt(z)D 
and there is at least one function ƒ(z) which is analytic for I(z) > 0 
whose values are in all the circles Kn(z). Hence we conclude that the 
following theorem is true. 

THEOREM 3.1. If (1.1) holds, then the matrix J+zI has at least one 
reciprocal which is bounded for l(z)>0. 

We shall now prove the following theorem. 

THEOREM 3.2. 7/(1.1) holds, then, in the determinate case, the matrix 
J+zI has just one reciprocal which is bounded for all z for which 
I (* )>0 . 

PROOF. In the determinate case at least one of the series (2.2) di
verges; and since [l, p. 262, formula (3.4)] 

(3.12) 
XP(z) 

YP(z) 
for y = I(z) > 0, 

it follows that the second of the series (2.2) diverges for 7(z)>0. 
Therefore [l , p. 263, formula (3.12)], the radius rp{z) of the circle 
Kp(z) tends to 0 as p tends to oo. This implies that there is only one 
function f0(z) which for I(z) > 0 has its values in all the circles Kp(z). 
The reciprocal (ppq) of J+zI given by (2.3) with/(z) =/o(z) is bounded 
for 7(z)>0. I t is required to show that any other reciprocal is un
bounded for a t least one z in I(z) > 0. 

We consider an arbitrary reciprocal of J+zI in I(z) > 0 . This must 
be given by (2.3). If f(z) ^fo(z) for I{z) > 0 , there must exist a value 
z=Zo, 7(s0) > 0 , such that 

/(so) -
Xp(z0) 

YP(zo) 
è k, 

for all sufficiently large values of p, k being a positive constant. This 
follows from the fact that Xp(zo)/Yp(z0) is in the circle 7£p_i(z0). Hence 
by (2.3), \ppq(z0)\

2^\ Yq(zo)\2k*-\ Yp(z0)\\ for each q and for all 
sufficiently large values of p. Since | Fg(z0)| > 0 by (3.12), and since 
the series X) I ^PO^O) | 2 is divergent, it follows that the series 

El 
jp-i 

PPq(Zo) 

is divergent. Therefore the matrix (ppq(zo)) is unbounded. 



19463 RECIPROCALS OF /-MATRICES 685 

BIBLIOGRAPHY 

1. J . J . Dennis and H. S. Wall, The limit-circle case for a positive definite J-fraction, 
Duke Math. J. vol. 12 (1945) pp. 255-273. 

2. E. Hellinger, Zur Stieltjesschen Kettenbruchtheorie, Math. Ann. vol. 86 (1922) 
pp. 18-29. 

3. E. D. Hellinger and H. S. Wall, Contributions to the analytic theory of continued 
fractions and infinite matrices, Ann. of Math. (2) vol. 44 (1943) pp. 103-127. 

4. H. S. Wall and Marion Wetzel, Contributions to the analytic theory of J-fractions, 
Trans. Amer. Math. Soc. vol. 55 (1944) pp. 373-392. 

5. , Quadratic forms and convergence regions for continued fractions, Duke 
Math. J. vol. 11 (1944) pp. 89-102. 

ILLINOIS INSTITUTE OF TECHNOLOGY 


