RECIPROCALS OF J-MATRICES
H. S. WALL
1. Introduction. We consider J-matrices
J=(is), Goa=0 for |p—gl22  jp=0bs
Jet1p = Jppr1 = — ap # 0,
such that
(1.1 I[J(x B)] =2 100 | [ = 2 1(a5) (%5 %511 + &ppe1) 2 0

for all x, for which the sums converge. These are the J-matrices as-
sociated with a positive definite J-fraction [4, 5, 1].! Let X,(z) and
Y,(2) denote the solutions of the system of linear equations

(1°2) — Gp—1%p—1 + (bp + z)xp — Gp¥pt1 = Or P = 11 21 3; 3 Qo =1)
under the initial conditions xo= —1, x;=0 and x,=0, x;=1, respec-
tively. We shall prove that when at least one of the series
(1.3) 21X, 05 v,

p=1 p=1

diverges, then the matrix J+2I has a unique bounded reciprocal for
I(2) >0, and that when both the series (1.3) converge then the matrix
J+2I has infinitely many different bounded reciprocals. This theo-
rem was proved by Hellinger [2] for the case where the coefficients
@, and b, are all real.

2. Reciprocals of an arbitrary J-matrix. The general right recipro-
cal of J+2I is (p,,) where p1,q, ¢=1, 2, 3, - - -, are arbitrary func-
tions of 2z, and [3, p. 116]

P1,4(2)Y 5(2), p=1,23-,¢q
(2.1) Pr(3) = {Pl.q(z)yp(z) + X ()Y 5(2) — X ()Y o(2),

y P=q+1’q+2,q+3’.
We shall say that the determinate case or the indeterminate case holds
for the J-matrix according as at least one of the series (1.3) diverges

or both of these series converge, respectively. In the indeterminate
case, both of the series
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(2.2) PIP SO N FOIL

p=1 p=1
converge for every value of z [3, p. 120]. Hence if the functions
p1,4(2) are chosen such that the series ZI pl,q(z)l 2 converges, it fol-
lows by (2.1) and Schwarz’s inequality that the double series
Z] p,,q(z)l % converges and therefore the matrix (p,.(2)) is bounded.
If, in particular,

p1.4(2) = Yo(2)f(3) — X,(2),

then
X,
V,(2)Y o(2) (f(z) 7 Z;) ) p=12--,q
(2.3) pue(2) = X,(2)
Yp(z)yq(z) (f(Z)— Y(Z))’ ?=q+1;q+21"'7

so that the matrix (p,4) is symmetric. If, for example, f(2) is an entire
function, then the matrix (p,,) given by (2.3) is bounded in the inde-
terminate case for all values of 2. Hence we have the following theo-
rem.

THEOREM 2.1. In the indeterminate case, the J-matrix J-+2I has
infinitely many different reciprocals (ppo(2)) whick are bounded for all
values of 2.

We have not used the condition (1.1), so that this theorem holds
for arbitrary J-matrices.

3. The determinate case. We suppose now that (1.1) holds. Then
(3.1 Br = I(by) 2 0, p=123"--,
and there exist constants g, such that if e, =I(a,) then
(3.2 o =Bl = gr)gm  0SgaS1 p=123 .

Conversely, if (3.1) and (3.2) hold, then (1.1) holds [5, p. 91].

For a fixed positive integer #, let &, &, - - -, &, be arbitrary real
numbers. Let (p,,) be any right reciprocal of J+2I, so that, if we now
take ao =0,

— @p_1pp—1,0 + (bp + 2)Pp,0 — @pPpit1,q = Op,0s

(3.3) pa=1,23 -,

where 8,,,=0 or 1 according as p ¢ or p =g, respectively. On multi-
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plying (3.3) by £, and summing over ¢ from 1 to # we obtain

(3-4) — Gp-1Mp-1 + (bp + z)"lp — appr1 = &p,
where
(3 . 5) Np = Z Prake

g=1

We now suppose (p,,) is symmetric, so that (2.3) holds for some func-
tion f(z). We note that

QnPn,q
W= —
Pn+1,q
is independent of ¢q for ¢=1,2,3, - - -, n:
Yn - Xn Xn - an
3.6) ) (2)f(2) (2) . o) = +1(2)w — a.Xn(z)
Yn+1(z)f(z) - Xn+1(z) Yn+1(z)w - anyn(z)

For a fixed z with I(2)>0, the transformation
_ Xntr1(2)w — a,X(2)
Yn+1(z)w - a’uYn(z)

maps the half-plane I(w)2 B.41g. upon a circular region K,(2) (cf.
[1]). Hence we see by (3.6) that the value of the function f(z) isin
K., (2) if and only if I(w) = Bai1gs. If the latter inequality holds then
[1, p. 261]

2

an
Bnt+y—1 (z—v—) Z Bugn + v, where y = I(z) > 0,
or
a2
3.7 I (’l> S Bu(1 — gu—)-
w
Now
2
an

CnPr+l,g = — Pn,qe
w

On multiplying this by £, and summing over ¢ from 1 to #, we get

2
Qn

(3 . 8) ApNnt1 = — Npe
w
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We now multiply (3.4) by #,, sum over p from 1 to #, and eliminate
the quantity @,%.41%. by (3.8). This gives immediately the relation

n—1

Z (bp + 2) I M» l2 Z ap(Mpiips1 + figNpr1) = _l Nn I2 + Z £pfip.

p=1 p=1

If we consider only the imaginary part and make use of the inequality
(3.7) and the relations (3.2) we then obtain (cf. [1, p. 258])

5> | 7,2 + ZI (Bo(1 = gp—1)) "1, — (Bpr182) /*p11 |?
p=1

3.9
+ Z £xI(n,) = 0.

=1

Hence, in particular,

(3.10) yil 1p|2 + Zn:&»f(np) <o

=1 p=1

This holds under the assumption that the value of the function f(2)
is in the circular region K,(z).
Turning now to the quadratic form

R.(§ 8 = Z qu(z)fpgq = 2 £,

P,g=1 p=1

we have, by Schwarz’s inequality and (3.10),

lR (E: E)lz = Zfzﬂb é'—'ZEp yz.:ll‘ﬂplz
= — Z ’:‘p - Zl EﬂI(’?p)>
= 7 2:1 £y (— I[Ru(t, B)]).
Therefore,
1 n
| Rut, 8|2 = 7}:152 | Rt B,
or
1 2 .
(3.11) | Rat, )| = — 2 &5

p=1
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This holds for any particular values of # and 2, I(2) >0, such that
the value of f(z) is in K.(z). Now [1, §3], K1(2) DK2(2) DKs(2)D - - -,
and there is at least one function f(z) which is analytic for I(z) >0
whose values are in all the circles K.(z). Hence we conclude that the
following theorem is true.

THEOREM 3.1. If (1.1) holds, then the matrix J-+zI has at least one
reciprocal which is bounded for 1(z)>0.

We shall now prove the following theorem.

THEOREM 3.2. If (1.1) holds, then, in the determinate case, the matrix
J+32I has just one reciprocal which is bounded for all z for which
I(2)>0.

Proor. In the determinate case at least one of the series (2.2) di-
verges; and since [1, p. 262, formula (3.4)]

X »(2) _}_
Y(2)| v

it follows that the second of the series (2.2) diverges for I(z)>0.
Therefore [1, p. 263, formula (3.12)], the radius 7,(z) of the circle
K,(2) tends to 0 as p tends to «. This implies that there is only one
function fo(2) which for I(z) >0 has its values in all the circles K,(2).
The reciprocal (p,,) of J+2I given by (2.3) with f(2) =f,(2) is bounded
for I(2)>0. It is required to show that any other reciprocal is un-
bounded for at least one 2z in I(z) >0.

We consider an arbitrary reciprocal of J-+2I in I(z) >0. This must
be given by (2.3). If f(2) #£fo(2) for I(2) >0, there must exist a value
z=2y, I(20) >0, such that

(3.12) fory = I(z) > 0,

X 5(20)
Y 5(20)
for all sufficiently large values of p, k being a positive constant. This
follows from the fact that X ,(20)/ Y, () is in the circle K, 1(2,). Hence
by (2.3), Ip,,q(zo)l 2> | Yq(zo)l 2k2. ] Y,,(zo)l 2, for each ¢ and for all
sufficiently large values of p. Since ] Yq(zo)l >0 by (3.12), and since
the series 3| Y,,(zo)] 2 is divergent, it follows that the series

Z l Pa(%0) I2

p=1

f(z0) —

= ’

is divergent. Therefore the matrix (p,4(20)) is unbounded.
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