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SWARTHMORE COLLEGE 

ON THE (C, 1) SUMMABILITY OF CERTAIN 
RANDOM SEQUENCES 

HERBERT ROBBINS 

I t is known [ l ] 1 that if a sequence \an\ (n = l, 2, • • • ) of real 
numbers is summable (C, 1) to a value a, and if X A * 2 A 2 < °° > then al
most all the subsequences of {an} are summable (C, 1) to a. I t will 
be shown that this statement continues to hold if "almost all" is re
placed by "with probability 1" and "subsequences" by the more gen
eral term "product sequences," the meaning of which will be defined 
in the next paragraph. The only analytic tool used is the strong law 
of large numbers [2]: if {yn} is a sequence of independent random 
variables with expected values E(yn)=0 and E(yn

2)~bn
2, for which 

^bn
2/n2 < oo 9 then with probability 1 the sequence {yn} is summable 

(C, 1) to the value 0. 
DEFINITION. Let {an} be a sequence of constants and let {xn} be 

a sequence of random variables such that the values of each xn are 
non-negative integers. For every n let k{n) be the least positive integer 
m such that 

m 

(1) J2 xi à n, 
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1 Numbers in brackets refer to references listed at end of paper. 
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and set wn — a,k{n)* (In intuitive terms this definition of wn is equiva
lent to the following. Start ing with the sequence 

(2) #i0i, #2#2, • • • , xnan, • • , 

strike out each term for which #» = 0, and then replace each remain
ing term #»#»• by the block Cviy Cb%y * * * > Cb% with Xi terms. Then wn is the 
nth term in the resulting sequence.) The sequence {wn} of random 
variables will be called the product of {an} by {xn}. 

T H E O R E M 1. Let {an} be a sequence of real numbers summable (C, 1) 
to the value a. Let {xn} be a sequence of independent, non-negative, in
teger-valued random variables withE{xn) = % (0 < x < <*> ), E(xn — x)2 = dn

2, 
and such that 

00 f 

(3) E ^ < - , 
i nl 

(4) 22 —r < °°-
i n2 

Then with probability 1 the product sequence {wn} is summable (C, 1) 
to the value a. 

P R O O F . I t follows from the strong law of large numbers applied to 
the sequence {xn — x} t ha t with probability 1, 

,. *i+ - • - + x* 
lim 
n->oo n 

(5) 
.. ["(#1 - *) H + (*» ~ *) 1 

= lim h o; = x 9e 0. 
n->«> L W J 

Likewise it follows from the same law applied to the sequence 
{an(xn — x)} t ha t with probability 1, 

. x&x + • • • + xnan 
lim 
n->oo W 

(6) 
1# p l ( * l — * ) + • • • + «n(#n — *) di + ' ' ' + anl 

= lim h x = xa. 
n-̂ oo L n n A 

But 
x&i + • • • + xnan ^ rxiat + • • • + xnan "J [" w "1 

* ! + • • • + * * L n J L*i + • • • + xnA 
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Hence with probability 1, 

(8) lim = a. 
n-*oo %i -f- . . . - j - xn 

Moreover, from (5) we note that, with probability 1, lim (xi+ • • • 
+xn) = 00, and hence, with probability 1, k(n) is defined for every n. 

Now we introduce the abbreviations 

(9) r(») = n — (#1 + • • • + **(„)-i), 

(10) p(n) = #101 + • • • + **<n)-lö*(n)-li 

(H) gW = #1 + ' * * + **(n)-l, 

noting that from the definitions it follows that 

(12) 0 < r(n) S xk(n)l 

and that 

wi + • • • + wn aka) + • • • + a*(n> #(w) + r(n)aHn) 
(13) 

^ w ç(w) + r(w) 

There are now two cases to consider. If dk(n)^p(n)/q(n) then it is 
easily seen from (13) that 

Xiai + * ' * + «ft (»)-!«* (n)-l PW Wi + • • • + Wn 

xi + • • • + **(»)-! q(n) n 
(14) 

ƒ>(?&) + #ft(n)0fc(n) __ «1^1 + * * * + Xk(n)dk{n) 

"" q{fl) + Xk(n) Xi + • • • + *ft(n) 

However, if a,k(n)^p(n)/q(n) then (14) holds with both inequalities 
reversed. Since k(n) becomes infinite with n, it follows from these in
equalities and (8) that with probability 1, 

Wl + • • • + Wn 

(15) lim = a, 
n->oo ft 

which completes the proof of the theorem. 
If in Theorem 1 we let each xn assume the values 0 and 1 with 

probabilities 1/2 and 1/2, then to each sequence {xn} corresponds the 
real number 0 ^x g 1 with dyadic expansion 

(16) x = . «1X2 • • • # » • • • > 

and probability in the space of sequences {xn} is identical with Le-
besgue measure in the unit interval. Moreover, "product sequence" 
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becomes "subsequence," and hence Theorem 1 specializes to the re
sult referred to at the beginning of this note. 

As another special case of Theorem 1 we shall derive a theorem 
on repetition sequences. 

THEOREM 2. Let {an} be a sequence of real numbers summable (C, 1) 
to the value a and such that^T,an

2/n2< <*>. To each O^t^l with dyadic 
expansion 

(17) *= . /A- • • fc. • • ft, « Oor 1) 

let correspond the sequence {vn}, where Vi — ai and 

(18) vn+1 = a(i+h+...+tH) (n = 1, 2, • • • ). 

Then f or almost every t the sequence {vn} is summable (C, 1) to the 
value a. 

PROOF. In Theorem 1 let each xn take on all positive integral values, 
with Pr(x = k)=2-k (& = 1, 2, • • • ). Then 

00 00 

(19) E(xn) = x = £ k2~k = 2; E(xn - x)2 = £ (* - 2)22~fc = 2. 
l l 

Thus the hypotheses in Theorem 1 on the sequence {#n} are satisfied, 
and hence, with probability 1, the product sequence {wn} of {an} by 
{xn} is summable (C, 1) to the value a. Now to each / defined by 
(17) let correspond the sequence {xn} such that 

(20) #i = l plus the number of consecutive 0Js immediately follow
ing the decimal point in (17), 

and for n = lf 2, • • • 

(21) xn+i = 1 plus the number of consecutive O's immediately follow
ing the nth 1 in (17). 

It is easy to verify that this correspondence /«-»{#,»} is one-to-one 
between the interval O ^ ^ l and the space of sequences {xn}, and 
that it carries Lebesgue measure in the former into probability in the 
latter. Moreover, if t<r+{xn} then the sequence {vn} associated with t 
by (18) is identical with the product {wn} of {an} by {xn}. Since 
with probability 1 the sequence {wn} is summable (C, 1) to a, it 
follows that for almost every / the sequence {vn} is summable (C, 1) 
to a, which was to be proved. 

We conclude with an application of Theorem 2 to random sequences 
of transformations (compare [3]). Let {lfn} (w = 0, 1, 2, • • • ; 
j70 = ƒ=identity) be a sequence of transformations of a space M 
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into itself, let A be a subset of M, and let p be a point of M. Denote 
the characteristic function of A by 

<22) **>-ia, **i' 
0 if #6 : -4 . 

If the sequence {<t>A(Un(p))} is summable (C, 1) to the value a let 
us say that the triple ({ Un}, A, p) has the ergodic limit a. Let T 
be a fixed transformation of Jkf into itself such that ( {Tn} , A, p) has 
the ergodic limit a, and to each / in the interval 0 ^ / g l with dyadic 
expansion (17) let correspond the sequence of transformations { Un} 
where Uo~I and 

TUn-i if L = 1 
(23) Un= (» = 1, 2, • • • ). 

J t f - i = 17-1 if ** = 0 
If we set an=<l>A(T»-l{p)) (» = 1, 2, • • • ) and vn=<f>A(Un~i(P)), then 
V! = ai and (18) holds. I t follows a t once from Theorem 2 that for 
almost every / the triple ( { Un}, A, p) has the ergodic limit a. 

If a completely additive measure fx is defined on a cr-field of subsets 
of M with /i(M) = l , and if the triple ({ Un}, A, p) has the ergodic 
limit a except for a set of p with /j-measure 0, let us say that the pair 
({ Un}, A) has ergodic limit a. Assume that this holds for ( {Tn} , A). 
Consider the Cartesian product of M with the unit interval 0 ^ / g l , 
and let H denote the set of all pairs (p} t) for which the sequence 
\<t>A{Un{p))} is summable (C, 1) to a, where { Un} is defined by (23). 
By the result of the preceding paragraph the intersection of H with 
any fixed £-line (except for a set of p of ju-measure 0) has Lebesgue 
measure 1. If JT is measurable it follows by Fubini's theorem that the 
intersection of H with any fixed Mine (except for a set of t of Lebesgue 
measure 0) has jti-measure 1. Hence for almost all / the pair ( { Un}, A) 
has the ergodic limit a. 
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