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1. Introduction, Recently, Besicovitch [ l ] 1 has exhibited a surface 
of the form £=ƒ(#, y) for which sequences of inscribed polyhedra, 
corresponding to triangulations into nearly isosceles right triangles, 
do not converge in area to the area of the surface. On the other hand, 
for surfaces defined by functions ƒ (#, y) which are absolutely continu­
ous in the sense of Tonelli this paper shows (see Theorem I) that in 
a statistical sense sequences of inscribed polyhedra that arise from 
triangulations which are successive refinements and which consist of 
right triangles of any preassigned shape (exactly isosceles, for ex­
ample) will converge in area to the area of the surface. For surfaces 
of a more general class (defined by functions which are absolutely 
continuous in the sense of Young, see below) analogous but some­
what weaker theorems (see Theorems II and III) are proved. 

In order to state the results more precisely let us consider the fol­
lowing definitions. Let Ç0 denote the unit square O g # g l , O g y ^ l . 
Let 3 denote the continuous surface defined by the continuous func­
tion z~f(xf y) for — oo < # < +co, — oo<y< + oo. Suppose that 
f(xf y) is periodic of period one in x and in y. The results of this paper 
are valid for a continuous function defined only on Qo since by ex­
tension of definition and a suitable change of scale (see Saks [8, 
p. 170]) the above conditions can be satisfied. 

Let Dn°(u, v), for Ogw^l and O g p g l , denote a subdivision of Ço 
into rectangles formed by the lines x = u+i/n and y — v+i/n where i 
takes on all integral values (positive, negative, and zero) which give 
lines across Q0. Let (x', y')> (x\ y")y (#", y'), and (x", y") denote the 
vertices of a generic rectangle with x1 <xn and y1 <y". Let 

(2) 

i ( ["ƒ(*". / ) - /(*', y')T 

rf{x",y")-f{x",y')-\Yi* 

+ [_ y w J} • 
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Now (x"-~x')(y"—y')Ti(f; x', y')> i = l, 2, are the areas of two tri­
angles inscribed in the surface S: z=f(x, y) and defined over the rec­
tangle x'^xSx", y' SySy"* Thus 

A[Pl(f;u,v)] 

- S [Ti(f; x', y') + Uf; x', ƒ)](*» - x')(y" - y'), 
n 

where the summation is over the vertices (x\ y') of Dn°(u, v), is the 
area of a polyhedron Pon(/î u, v) inscribed in 5 and defined over Co. 

The Lebesgue area of a surface S: z~f(x} y), (x, y)£(?o, can be 
defined as follows: 

(4) ACS) « g.Lb. Km inf E(Pn) 
n 

where E(Pn) is the area of the polyhedron Pn in the elementary sense 
and the greatest lower bound is taken over all sequences of polyhedra 
Pn:z~pn(x, y)y {x, y)EQo, such that pn(x, y) converges uniformly on 
Ço to f(x, y). We shall assume that the reader is familiar with the defi­
nitions of bounded variation in the sense of Tonelli (BVT) and abso­
lute continuity in the sense of Tonelli (ACT) (see, for example, Saks 
[8, p. 169]). We shall further assume familiarity with the concept of 
absolute continuity of a function on a Borel set (see Young [9, p. 52]). 

Let f(x, y) be continuous and BVT on a rectangle R: a^x^b, 
c â y ^d. Then we shall say that f(x, y) is absolutely continuous in the 
sense of Young on R, or simply ACY on R: a^x^b, c^ySdy if the 
following conditions hold: 

(a) R~B'+B", where B' and B" are Borel sets; 
(b) for each xy a^x^b, let Bi be the intersection of B' with the 

segment x~x, c^LygLd. B" is defined similarly. For almost every x, 
f(xt y) is absolutely continuous on Bi as a function of y, and, for 
almost every y, f(x, y) is absolutely continuous on Bi' as a function 
of x. The term ACY is justified by the fact that L. C. Young [9] 
first formulated this condition and made an important application 
of it. 

The following theorems will be proved in this paper. 

THEOREM I. Iff(x, y) is A CT on Ço then for every increasing sequence 
{»<}«li of positive integers such that n% divides ni+ifor all i we have 

lim A[p7(f; u, v)] -ACS) 

for almost every (u, v)(EQo. 
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THEOREM II. Iff(x, y) is AC Y on Qo then for almost every (u, t>)£(?o 

limmîA[Pno(f;uyv)] =4 (5 ) . 
n 

THEOREM III. If'fix, y) is ACY on Qo then for any sequence {nAfLi 
of positive integers with w»—>+oo, there exists a subsequence {na\ of 
{ni} such that for almost every (u, v)(EQo 

limA[P7(f;u,v)]=A(S). 
a. 

In the study of the area of nonparametric surfaces various people 
have imposed conditions of regularity on the triangulations consid­
ered. Inspection of the proofs which follow will show that the sub­
division Dn°(u, v) may be replaced by a subdivision Z>wn°(w, v) arising 
from m intervals in the x-direction and n in the y-direction, and the 
theorems analogous to those above but stated for squares Q(u, v) 
(cf. §2) would still be valid. In order to give theorems valid on Ço 
Lemma 1 (cf. §2) requires that m/n and n/m both be bounded (also 
see Radó [5]). 

If in the above definition of the Lebesgue area of a surface S we 
further require that the polyhedra be inscribed in 5 we obtain a 
quantity A*(5), and clearly A*(S)*zA(5). The question of when 
A(S)=A*(S) has been called the Problem of Geöcze. It has been 
proved (see Huskey [2], for example) that A(S) ~A*(S) if ƒ(#, y) 
is ACT on Q0. Theorem I implies more than this, namely, that almost 
every sequence constructed as above converges in area to A(S) if 
f(x, y) is ACT on Qo. 

The fundamental, and so far unsolved, problem here is whether 
just continuity of ƒ(#, y) implies A(S)=A*(S). Radó [5] has shown 
in this general case that A*(S) ^2ll2A (S). It has been shown (Huskey 
[3]) that if ƒ(*, y) is ACY on Q0 then A(S)=A*(S). Theorems II 
and III show that somewhat more than this is true. 

By the inequality 

A(S) â lim inf A [Po(/; u, v)] g lim inf A [P?(f; u, v)] - A(S) 
n a 

we see that Theorem III implies Theorem II. However, independent 
proofs are given here. It is hoped that this presentation will encourage 
some reader to attack successfully the general case described above. 

2. Preliminary. Let Q(u, v) denote the square u^x^u+1, 
v^y^v+1. Let Dn(u, v) denote a subdivision of Q(u, v) into n2 con­
gruent squares. Let S(u$ v) denote the surface defined by z~f(x, y), 



1946] THE AREA OF A NONPARAMETRIC SURFACE 723 

(x, y)ÇzQ(u, v). Let Pn(f) u, v) denote the polyhedron inscribed in 
S(u, v) and which corresponds to the subdivision Dn(u, v) (see §1). 
By boundary triangles of Pn(f; u, v) we mean triangles which have at 
least one vertex on the edge of S(u, v). 

LEMMA 1. The sum of the areas of the boundary triangles ofPn(f;u,v) 
or of Pon(f; u, v) converge to zero as #—>+ oo. (See Huskey [3, p. 338].) 

Due to periodicity Pn(f î u, v) can be replaced by a trianglewise 
identical polyhedron Pn(j\ u', v') having only boundary triangles 
overlapping the edges of S and whose other triangles are identical 
with those of Pon(f; uy v). It is easy to show that A [S(u, v)]=A(S), 
see Saks [8, p. 179]. Thus, in view of the above lemma, it is clear 
that Theorems I, I I , and I I I will be established if we prove that, 
under the assumptions stated therein, 

lim* A [Pni(f; u, v)]~A(S) for almost every (u, v)£.Qo; 
lim infn A [Pn(f; u, v) ] =A (S) for almost every (u, v) GQo) and 
lima A [Pnet(f î u, v)]~A(S) for almost every (w, tf)£(?o. 

LEMMA 2. If the measurable function gn(x, y) is periodic in x of 
period 1/n and} likewise, periodic in y of period \/ny then for any in-
creasing sequence {#t}r«i such that ni divides ni+ifor all integers it we 
have lim inf gni(x, y)s=a constant for almost every (x, y). 

PROOF. (This lemma seems to be well known but knowing of no 
convenient reference we give the following proof.) Let {ni} be given 
as described and let (j>(x, y) =lim inf* gni(x, y). <£(#, y) is periodic in x 
and in y of period 1/ni for every i. (1) We first assume <f>(x, y) is 
continuous and it is easy to show that <j>(x, y) is constant for all 
points (x, y). (2) We now assume that <£(#, y) is summable on Ço 
and let <J>K(X, y) =^""2/o/o0(^+w» y+v)dudv. <f>h(%, y) is continuous, 
periodic of period 1/m in x and in y for all i, and is therefore a con­
stant. <t>h(x, y)-^<t>(xy y) as h—»0 for almost every (x, y). Therefore, 
<[>(x, y) is a constant almost everywhere. (3) To prove the theorem 
we note that <j>(x, y) is measurable and let 

4>2v(#> y) = min [max [<£(#, y), — iV], N] where N ^ 0. 

Now \<I>N(X, y)\ ^N is summable and periodic as above so <J>N(X, y) 
is a constant almost everywhere. <£#(#, y)—*l>(x, y) as iV—>+oo, so 
</>(x, y) is a constant almost everywhere. QED. 

3. Proof of Theorem I. Let h be a positive number and set 

f\x> y) = — f f f{% + a, y + ftdadfi 
h2Jo J o 
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which is an integral mean of ƒ(#, y). It is well known that A (Sh)—>A (S) 
as A->0 where Sh: z~fh(x, y), (x, y)EQo (see Saks [8, p. 179]). 

Let Vc
d(x, ƒ) denote the total variation of f(x> y) for x~x and 

cSySd. Va
b(y, ƒ) has a similar definition. It is easy to show (see 

Huskey [2, p. 251 ]; or Radó and Reichelderfer [6, p. 535]) that 

(5) ƒ VÎ(x, f - f)dx + f Vh
a{yJ-fh)dy-*0 asA->0. 

Jessen [4] has shown that if f(x) is summable and of period one in 
x then for any increasing sequence of positive integers {m»-}«li such 
that nti divides rm+i for all i it is true that 

mi—1 p 1 

lim 23 (l/nii)f(x + k/nti) = I f(x)dx 
k~o Jo 

for almost every x. 

LEMMA 3. 

\A[Pn(f;i9fi)]-A[Pn(^;lfi)]\ 

•,i-o n \ n / \ n / 

The proof for Theorem 2.7 in Huskey [2, p. 253] can be easily 
altered to prove this lemma. 

Using this lemma with Jessen's theorem and the fact that A (S) is 
finite, we have for all (£, r)) not in a set ei of measure zero 

«.E(-i-)rvr-(«+^/-/)+Fr(,+^/-/)l 
*~o \mi/ L \ mi / \ nti / J 

- ƒ +V:+1(*. ƒ - /)«** + ƒ *V^Cy, ƒ - / W 
Now, to prove the theorem, consider 

\A(S)-A[Pmt(f;i,v)]\ 

(7) S | ACS) - ii(S») | + | ii(S*) - il [Pmt(f
h; fc *)] | 

+ U[^C/*;fcn)]-^[i,«*a;fcv)]|. 
For €>0 given, choose A so that the first term on the right 

of (7) is less than e/2, and so that the right-hand side of (6) is 
less than e/4. Next, choose (£, rj) in Qo — ei and then choose i 
so that the remaining two terms of (7) are less than e/2, Note that 
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lim A [Pmi(f
h; É, V)]~A(Sh) for every (£, q) (see Saks [8, p. 177]). 

This completes the proof of Theorem I. 

4. Proof of Theorem II, A [Pn(f; £, y) ] is periodic in £ of period 
1/n and in r\ of period l/n. Therefore, except for (£, rj) in a set e2 of 
measure zero, we have 

(8) lim inf A [Pmi(f î f» *?) ] — ^ (a constant) 

where mi divides mi+i for all i. 
By definition and periodicity of A [P»(/î £, y)], 

ff [Ti(f; a, p) + T2(f; a, f5)]dadp 

= E **2 f f V M [ri(/; *' + «, / + ?) 
(9) + r , ( / ; « ' + a f / + j8)]da48 

- w2 f ' W f ^ [Pn(f; J + a, r, + j3)]<M9 

= f f ;i[Pn(/;a,|8)<MJ. 

This formula is essentially a result of Radó (see [5, p. 500 ]). 
L. C. Young [9] has shown that if f(xt y) is AC Y on Q0 then 

(10) ƒ ƒ 2Ti(f; a, ftdadp -+A{S), i - 1, 2, 

as w—>oo in any manner (cf. §1). 
Now, almost everywhere in Q0y 

A = lim inf A [Pm%(f; *, iy)] £ lim inf A [Pn(f; £, rj)]t 
i n 

w = l, 2, 3, • • • . So, using formulas (8), (9), and (10), the lemma of 
Fatou, and the property AC Y of f(xy y)f we have for almost every 

ACS) = lim ({ A[Pmi(f; a, p))dadp ^ f f Adxdy 

èlimmîA[Pn(f;i;,v)]^A(S), 

which proves the theorem. 
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5. Proof of Theorem III. 

LEMMA 4. If (a) E is a measurable set in the plane and of finite measure, 
(b) {gn(x, y)}Z„o is a sequence of non-negative rçal-valued functions 
measurable and summable on E, (c) lim infn gn(x, y)è£go(x, y) almost 
everywhere on E, (d) lim supn ffEgn(x, y)dxdySjjEgo{x, y)dxdy, then 
there exists a subsequence {gni(x, y)}t>i such that gni(x, y)-+igo(x, y) 
almost everywhere on E. 

For a proof of this lemma see Radó and Reichelderfer [6, p. 551 ]. 
Using equations (4), (9), and (10) we readily see that A [Pni(f] £, y)] 
satisfies all the above conditions on Q where {w»-} is any sequence of 
integers such that «»•—><*>. (gQ(x, y) corresponds to A{S).) This com­
pletes the proof of Theorem III. 
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