A NOTE ON LINEAR HOMOGENEOUS DIOPHANTINE
EQUATIONS

L. W. GRIFFITHS
In this paper the coefficients a;; in the equations
(1) %1+ - F ainx, =0 (i:l’...,m)

are constant rational integers and all letters denote integers. If
m=n—1 and the rank is n—1 then the complete solution in integers
is well known. Thus, if E; is the determinant obtained by deleting the

Jjth column from the matrix of the coefficients, and if e= (&, - -+ -, E,),
then the solution is
(2) X = ('— l)itEJ'/e (j = 1) tt ”’)'

in which ¢ is an arbitrary integer.

E. T. Bell recently conjectured that if m <n—1 and if the rankr
is m then the solution is similarly obtained from the system formed
by (1) and the equations

(3) €i1x1+"'+£inxn=0 (i=1,"‘,”‘—m'—l),

in which the £;; are arbitrary integers. In this paper this conjecture
is proved by induction. Since this solution is written down directly
from (1) and is fully displayed these results are more usable than those
in the literature.!

If r=1 it can be assumed without limitation that a; - + - @, 0,
(a1, + - -, a,) =1, and at least one of %1, - - -, x, is not zero. If n=3
there are integers ¢, y1, s, ¥s, @, A1, Az, k1, ka2 such that

4) %1 =ty % = by, %3 = bys, (31, 2 ¥5) = 1,
(5) ay = dAl, Ay = dAz, (A1, Az) = 1, klAz - szl = 1.

Since (d, as) =1 there is an integer s such that

(6 ys = ds, A1y + Azy: + azs = 0.
Then since (41, 42) =1 there is an integer 7 such that
(™ y1 — askss = Aor, Y2 + askis = — Ayr.

These conditions are also sufficient. Hence the complete solution is
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1 dkzs —_—7r
Xy = t-— )
d as a3 1 dkis  dkss
(8) X3 = t-—
1 dkiss —r d as as
X = — t-— )
d a as

Since (d, as) =1 there are integers p and P such that —r4pas=dP.
Hence d is the greatest common divisor of the determinants in (8).
Therefore for the particular values —dk;s, —dkss, 7 of £u, £, &3, (8) is
an instance of (2).

Similarly, if #=4 and di= (a1, az), ds=(as, as) then the solution of
1%+ a2x2+asx3+axs =0 is equivalent to that of 41y1+A4sy.= —dsS
and A4;3y;+A4,y4=d.S. By the preceding discussion the complete solu-
tion for each of these equations is known. The expressions for .S are
then equated. Thus it is proved that there are integers ki, - - -, ks,
r1, 73, 41, t3, s such that the solution is obtained by applying (2) to
the matrix

- 73A1 - 7’3A2 dakatls d3k4t1s
(9) dlkltas dlkztas -_ 1’1A3 - 71A4 .

dlAl dlAz d3A3 d3A4

If =5 the notations x;=ty; (j=1, - -, n), (y1, - - -, Ya)=1,
a’i=8ai (j=1! ) 'IZ—Z), ai=§Ai (J=n_11 n)v (alr Tty aﬂ—2)=1y
(An—ll Aﬂ)zla Oli=d1A,' (.7=1) Ty ”_3)1 (Alv Tt Ty Aﬂ-—3)=11

On2=d3An3, ¢(=dsn, (As.-3 n)=1 are used. The solution of
a1+ - - ¢ +a.x,=0 is equivalent to that of A, 1Yr1+4,y,=0S
and a1+ - -+ Fang¥ae=—¢S. In particular, if =35 then y,, ¥,
S are obtained as in (8) and ¥, ¥2, ¥s, S from (9) with 4, replaced
by 7. If, to simplify the notation, f;; denotes the element in the sth
row and jth column of this new matrix then x;, - - - , x5 are obtained
by applying (2) to the matrix

— rididr — ridids — ridsds  dm@aSids  dsnqsSids

(10) ofu 0f12 6f1s J1ad s J1ds

8fa 8fa2 0f2s Sfauds Sfauds

5d1A 1 5d1A 2 6d3A 3 da‘l)A 4 da‘nA 5
In general, the matrix for x4, - - -, %, is obtained from the matrix
for n—1 variables in precisely the same way as (10) is obtained
from (9).

If 1<r<n—1 it can be assumed without limitation that the first
equation satisfies the conditions a; - - - @, 0, (a1, : - -, @,) =1,
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of the preceding discussion. If E; denotes aaxi+ : : *+ +Ginks
(¢=1, - - -, 7) then a given solution of E;=0 is obtained by apply-
ing (2) to an appropriate matrix whose sth row is au, * * *, Qs
(i=1, - -+ -, n—2) and whose last row is an, * * * , d1a. By hypothesis
these values of %, - - -, %, also satisfy E;=0. Therefore the de-
terminant obtained by placing the row aa, - - -, @2. under this
matrix is zero. Hence, if 4; is defined as aaxi+ : -+ +ainXa
(¢=1, - - -, n—2), then the rank s of the functions 4y, - + -, 4.,
E,, E; is less than #n. Therefore there is a set of s functions from this
list on which each remaining function is linearly dependent, with in-
teger coefficients. If indeed the subset includes both E; and E, then
the notation can be assigned so that the subset is 41, - - -, 4,9, F,
E,. Then there are integers d, d;, - - - , d, such that d 0 and

11) d4,e = d1A1 + -+ + dscsd o2 + derEr + d,E,.

Now the result of applying (2) to the original matrix is the same as
the result of applying it to the matrix which is obtained by replacing
On2,j BY dane,; (j=1, - - -, n). By (11) in this new matrix da,_,;
may be replaced by the sum diou;+ - - - +d,—2tts2,;+ds101;+d 02,
and hence by d,a2;, and hence by a»;. Again, if the subset includes E;
but not E,, or if it includes neither E; nor Es, or if it includes E; but
not E,, then in a similar way the matrix can be replaced by a matrix
having ay, - - -, 014 as last row and as1, - - -, @24 as another row. This
process can be continued until @i, - - -, @in (6=1, - - -, ) appear.
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