
A GENERALIZATION OF A THEOREM OF 
LEROY AND LINDELOF 

V. F. COWLING 

1. Introduction. Consider a Taylor series f(z) =Xn>«oön2n with ra
dius of convergence unity. Let the coefficients an be the values taken 
on by a regular function a(z) for 2 = 0, 1, • • • . 

The object of this paper is to study the Taylor series under the 
assumption that a(z) is regular in certain domains.1 The results ob
tained are of the nature of domains in which the function defined by 
^2n^oanZn is regular and of domains which contain the singularities 
of the function defined by the series. In terms of a(z) fairly general 
sufficient conditions are given such that the circle of convergence is 
not a cut for the function. 

The results may be regarded as a generalization of a theorem due to 
LeRoy and Lindelof.2 

THEOREM ( L E R O Y AND LINDELOF). Suppose (a) a(x+iy) is regular 
in the semiplane x^a, (b) there is a 0<ir such that for every arbitrary 
small positive e and for sufficiently large p 

| a(a + p exp (if)) | < exp [p(0 + e)], - T/2 g * = TT/2. 

Then 
00 

ƒ(*) = ]C a(n)zn, z = r exp (i<t>) 

is regular in the angle 
6 < <f> < 2?r - 0. 

The generalization of this theorem that we prove consists, under 
suitable restrictions, in replacing the semiplane x^a by an angular 
opening including the axis of positive reals in its interior. 

The singularities of the function f(z) studied in this paper are those 
of a "principal branch" obtained by immediate continuation of the 
series. 

Consider an angular opening with vertex on the positive real axis 
which includes the axis of reals in its interior. Suppose a(z) has no 
singularities in this angular opening with the possible exception of 

Presented to the Society, December 29,1946; received by the editors May 29,1946. 
1 By the term domain we mean an open connected set. 
2 See Dienes [l] . Numbers in brackers refer to the bibliogiaphy at the end of the 

paper. 
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the point at infinity. Let the sides of the angular opening make angles 
\f/i and fa with the axis of reals. 

Our problem is to characterize the behavior of the function f(z) in 
terms of the magnitudes of the angles ^ i and ^2 and the type of singu
larity a(z) has at infinity. 

FIG. 1 

We consider first the case where a (z) may have a pole of order K 
at infinity and then the case in which infinity may be an essential sin
gularity for a(z). 

2. a(z) may have a pole at infinity. Suppose now that a(z) is regular 
interior to and on the sides of the angular opening shown in Figure 1, 
except for at most a pole of order K a t infinity. In Figure 1 let 
l — l<h<l where / is a positive integer. 

By the calculus of residues if F(œ) and G(co) are uniform functions 
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in a domain and if G(co) has only simple zeros at- in this domain, then 
(integration being understood in the positive sense) 

» ƒ 
F(«) F{at) 

where C is a path enclosing a» but no other zero of G(co) and G'(a») is 
the derivative of G(o>) evaluated at co = at-. 

Let ƒ?(«) =a(œ)z0) and G(o>) = exp (2TTÎW) — 1. 
For a given value of z = r exp (Î0) we shall understand by sw 

z" = exp [co(log r + iff)], Q £ 6 < 2w. 

Here exp z is the principal value of e*. This convention will be adhered 
to throughout the paper. 

Then by (1) 

1 r a(co)zw 

(2) I do) = a{n)zn 

liri J c exp (2wiœ) — 1 
where C is a path enclosing n and no other real integer. a(co) is a 
function regular in the angular opening. This choice of F(co) and G(w) 
led to the well known theorem of LeRoy and Lindelof [ l ] and is of 
course a well known method for the summation of certain series. The 
analysis of this paper follows lines similar to those in the analysis of 
Lindelof. 

Consider 
a(w)sw 

ƒ. dœ 
ch,R exp (2iriù)) — 1 

where Ch,R is the path formed by the two sides of the angular opening, 
with vertex h>0, and the arc of a circle of radius R, where R is a 
positive integer. This is indicated in Figure 1. 

By application of (2) it follows that 

1 r 0(co)zw Rt^1 

(3) — I ; ; «fe - £ „(»)*•. 
llTlJ ChtR e x p (ZTTfcCO) — 1 n , { 

Denote the sides of the angular opening corresponding to \f/i and ^2 
by Ii and h and the arc of a circle by C. Then 

a(œ)zu
 i Ç a(co)zw 

• do) J ch%R exp (27rico) — 1 J j 2 
(4) 

fl(w)3w /• a(co)zw 

+ I do) + I &>• 
f fl(a>)Zw f 

• I ; do)+ I 
J c exp (2Trio)) — 1 J ij 

c exp (2irio)) — 1 J j j exp (2?ria>) — 1 
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I t will now be shown that, if we place certain restrictions on ^i , ^2 
and z, 

a(o))zu 

do) x c exp (2irio)) — 1 

converges uniformly to zero as R becomes infinite. 
Let z — r exp (iir) and w = A+i?exp (i\(/) with —ir<v£*\{/^iU<ir. 

By hypothesis there exists an RQ such that in the angular opening 
with vertex h>0 

(5) I a(h + R exp (ty)) J < ARK, R > Ro, 

where A is a constant and K is a positive integer. On the arc C 

1 
(6) <B, 

exp (27rico) — 1 

where B is a constant. This follows from the fact that co is bounded 
away from an integer by our choice of ft, I and R. 

Clearly 

exp (2riœ) 

Hence on C, 

(7) 

1 

1 — exp (— 2jriw) 
I exp (— 2vioi) \. 

exp (2TÎO)) — 1 
< Dexp (27i\RsintfO, 

where D is a constant. This inequality proves useful for —ir <v ^\{/ <0 . 
Now 

(8) 

and 

IX 
a(oi)zw 

c exp (2irio)) — 1 
do) x 

a(ü>) \\z»\ 

c J éxp (2irioi) — 1J 
do) J, 

I zu J = I exp [(h + R cos \[/ + iR sin ^)(log r + ÎT)]\ 

= rh exp [— -R(log r - 1 cos ^ + IT sin $)]. 

I f r < l , t h e n 

(9) 6(r, ^) = log r-1 cos ^ + 7T sin ^ > 0, 0 ^ ^ ?r/2. 

If r > e x p (7T tan \p), then 

(10) 6i(r, ^) = log r"1 cos \p + ir sin ^ > 0, 7r/2 ^ ^ ^ « < TT. 

Clearly r > e x p (x tan u) is sufficient for (10) to hold. We note here 
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and also in (11) below, that the case | ^ | =7r/2 is included. If r < 1 then 

(11) 62(r, f) = log r"1 cos yp - r sin yp > 0, - TT/2 g i£ ^ 0. 

If r > e x p (— T t a n ^ ) , then 

(12) bz(r, \p) = log r-"1 cos \p — x sin \p > 0, — x < » g ^ ^ — ?r/2. 

Clearly r > e x p (— TT tan v) is sufficient for (12) to hold. 
We have seen that if —7r/2 èxpSir/2, r< 1 implies b(r, ^) > 0 and 

h(r, \p)>0. Denote, for a > 0 but otherwise arbitrarily small, by rx the 
larger of exp(7r tan u)+a and exp(—TT tan v)+a. Set r2 = l — a', 
a'>0 but otherwise arbitrarily small. Then fi^r^Lr^ implies ir/2<u 
<ir and —7T <v < —7r/2. We choose a and a ' sufficiently small, so that 
r i ^ r ^ r 2 is an interval consisting of more than one point. Then, for 
a given a and a ' and ri^r^rit (9), (10), (11), and (12) take on their 
minimum values on their respective intervals of definition. Let these 
be b'>0, bl > 0 , b{ > 0 and b{ > 0 . Denote by j3>0 the smallest of 
these four values. Then by application of (5), (6) and (7) for R>R0, 
(8) becomes 

- J - f - -d<*\£Tt>(A,BtD)RI e x p ( - j 8 * ) # 
c exp (2TT*W) — 1 I ./„ 

- To(A, B, D)R exp ( - pR)(u - u). 

Given an arbitrary e > 0 , there exists an Ri such that, for all R>Ro, Ri 
and ri^r^r^ the right-hand member of (13) is less than e. That is 

(14) I f 
a(a>)sw 

c exp (2Wco) — 1 
< €, £ > Ro, Ri; fi â r g r2. 

By (14) it follows that the integral along the arc converges uniformly 
to zero as R becomes infinite. Hence by (3) and (4) we may write 

(15) E a(n)s« - I ; : , d<»+ „ ' A ^. 
n~i J j 2 exp (2x^a)) — 1 J ix exp (27na>) — 1 

Let 

/

a(co)zw 

~—— do) 
ii exp (27rico) — 1 

and 

J a(w)3w 

^T"^ T ^ 
i , exp (27Ttw) — 1 

I t will be shown that J^i(z)+J^t(z) is regular for z in a domain 
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which contains the interval — r2^z^ — rx in its interior. 
In this discussion four cases with regard to the angles \p\ and \p2 

present themselves naturally. 

A: - T/2 < ^2 < 0, 0 < ypx < ir/2 

B: - TT/2 < ^2 < 0, f i = T/2 

C: ^2 = ~ ?r/2, ^i = TT/2 

D: ~ 7 T < z ; g ^ 2 ^ - TT/2, TT/2 <^xSv < v. 

Consider case A. Here 

J a(co)zw 

__—_ —do) 
ii 

ƒ. 

exp (27rico) — 1 

a(co) exp [(h + R exp (^i))(log r + id)] 
exp (i\f/i)dR. 

1 o exp (2irioi) — 1 

From (5) and (6) it follows that 

(16) | /*(*) | < - 4 £ ^ f jR* exp [ - JÎ(log r-1 cos ^i + 0 sin fa)]dR. 

If 

(17) 0 < r < exp (0 tan ^i) , 0 g 0 < 2r, 

then &(r, 0, ^i) = log r-"1 cos yf/x + 0 sin ^ > 0. 
Suppose s = r exp (i0) is in some closed domain3 contained in the do

main defined by (17). Denote by bf{\pi)>0 the minimum assumed by 
b{r, 0, \{/i) in this closed domain. Then (16) becomes 

| J^iz) | < ABrh f RK exp [ - b'ttJRJdR < M, 
J o 

where M is a constant. 
Therefore J^iiz) converges uniformly for z in any closed domain 

contained in (17). For co on Ix and z contained in the domain defined 
by (17) the integrand of J$i{z) is continuous in co and z. I t follows 
from our definition of zœ that for a fixed co on Ix the integrand is a 
regular function of z for z in any closed domain contained in (17). 
Then by well known theorems [2], J^z) is regular for z in any closed 
domain contained in (17). 

Consider 
8 D is said to be a closed domain if there exists a domain E with the property that 

D=*Ê. Here if E is a given set and E' its derived set then Ë~E-\-E'. 
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/

a(<S)z 
TTTl 7do) 

-ƒ.' 

exp (2iriu>) — 1 

a(w) exp 
exp (i\l/2)dR. 

exp (lirico) — 1 

By (5) and (7) we may write 

(is) r00 

< ,4Z>* I JR* exp [ - R log r"1 cos ^2 + (0 - 2TT) sin fc]dR. 
Jo 

If 

(19) 0 < r < exp [(0 - 2TT) tan ^2] 

then b(r, 6,$2) = logr~1 cos^2 + (ö — 2ir) s i n ^ X ) . 
Let z = r exp (id) be in any closed domain contained in the domain 

defined by (19). Denote by ô'(^2) > 0 the minimum taken on by 
b(r, 0, ^2) in this closed domain; then (18) becomes 

I ƒ,,(*) I < ADrh f RK exp [ - b'(fc)R]dR < N, 
Jo 

where N is a constant. 
I t then follows by the same analysis employed in the case of J*i(z) 

that J^2(z) is regular in any closed domain contained in the domain 
defined by (19). The function J^i(z)+Jrp2(z) will therefore be regular 
for z = r exp (id) in any closed domain contained in the domain com
mon to (17) and (19). 

I t has been shown (IS) that 
00 

X) <*(»)** = J^(z) + J^(z) 

where z = r exp (iir) and fi^r^r^. But J*i(z)+J4,2(z) has been shown 
to be regular in a domain which includes the interval — r 2 ^ z ^ — rx 

in its interior. H ence Jyf/i(z) ~\~Jyp2(z) provides the analytic continuation 
of the function defined by Yln-ia(n)zn to any closed domain contained 
in the domain common to (17) and (19). Since 

z-i °° 

ƒ(*) = Z <ri)*n + S a(n)zn, 

it is evident that J^i(z)+J^2(z)+^/
l
r^}0a(n)zn provides the analytic 

continuation of f(z) to the same domain. Hence in this case ƒ(z) will 
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in general be regular in a domain bounded by two spirals as indi
cated in Figure 2. 

Consider case B. By an analysis similar to that given in case A it is 
easily shown that Jfi(z) + J+2(z) is regular in any closed domain con
tained in the domain common to 

(20) 0 < r < exp [(0 - 2?r) tan ^ 2 ] , 0 ^ 6 < 2x, 

and the whole complex plane excluding the segment 1 to + oo. By an 

FIG. 2 

argument similar to that employed incase A it is easily seen that ƒ (z) 
is regular in any closed domain contained in the domain common to 
(20) and the whole complex plane excluding the segment 1 to + °°. 

Case C. Here we have a very special case of the theorem of LeRoy 
and Lindelof [ l ] . I t could be shown by an analysis similar to the 
preceding that ƒ (z) is regular in any domain of the complex plane ex
cluding the segment 1 to + oo. 

Finally we consider case D. By a method similar to that employed 
in case A it is simple to show that Jfi(z) converges uniformly for z 
in any closed bounded domain contained in the domain defined by 
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0 g S < 2TT, (21) r > exp (0 t a n ^ ) , 

and that J+t(z) converges uniformly for z in any closed bounded do
main contained in the domain defined by 

(22) r > exp [(0 - 2TT) tan ^ 2 ] , 0 ^ 0 < 2w 

FIG. 3 

Now the domain common to (21) and (22) contains the segment 
— r^z^ — Y\ in its interior. This is easily seen by setting 6=w in 
(21) and (22) and noting that rx is the larger of exp(7r tan u)+a and 
exp(7r tan v)+a, a > 0 . Hence by arguments similar to those used in 
case A 

i-i 

/*(*) + J^(z) + X) <n)zn 
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provides the analytic continuation off(z) to any closed bounded do
main contained in the domain common to (21) and (22). For the case 
\l/i=\p2 the spirals (21) and (22) are indicated in Figure 3. In calculat
ing J+i(z) and J$2(z) for a given z — r exp (id) we recall that by our con
vention 

2W « exp [co(log r + id)], 0 ^ 6 < 2x. 

Hence we have the following theorem. 

THEOREM 1. Letf(z) —^n^oanZn with radius of convergence unity. Let 
the coefficients an be the values taken on by an analytic f unction a(z) at 
0 = 0, 1, 2, • • • . Suppose a(z) is regular with the possible exception of a 
pole of order K at infinity, in an angle with vertex h>0 (non-integral) 
on the axis of reals and including the axis of positive reals in its interior. 
Let the sides of this angle make angles \{/i and fa with the axis of reals. 
Then, if y>0 but otherwise arbitrarily small, and 

A: 0 < fa < T/2, - v/2 < fa < 0, 

f(z) is regular in the domain common to 

r g exp [6 tan ^i] - 7, O ^ K 2TT, 

and 

r g exp [($ - 2TT) tan fa] - 7, O ^ K 2TT. 

If 

B: fa « TT/2, - TT/2 < fa < 0, 

f(z) is regular in any closed domain common to 

r <: exp [(6 - 2TT) tan fa] - 7, 0 ^ 6 < lie, 

and the whole complex plane excluding the segment 1 to + 00. If 

C: fa = TT/2, fa = - TT/2, 

f(z) is regular in any closed domain of the complex plane excluding the 
segment 1 to + 00. If 

D: TT/2 < ^1 ^ u < 7T, - T < v S fa < - TT/2, 

f(z) is regular in any bounded domain common to 

r à exp (0 tan r î) + 7, O ^ K 2ir, 

and 
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r ^ exp [(0 - 2TT) tan ^2] + 7, 0 ^ 0 < 2r. 

I t is clear4 that the theorem above is still true even though a(z) 
does not have a pole at infinity. All that is necessary is that a{z) be 
single-valued in the angle and that | a(h+R exp (i\p)) \ <ARK, R>R0. 

3. a(z) may have an essential singularity at infinity. Suppose a(z) 
is regular interior to and on the sides of the angular opening of Fig
ure 1. Suppose there exists an R0 such that for R>Ro and z = h 
+R exp (i\p) in this angle 

(23) I a(h + R exp ( # ) ) \ < exp (OR). 

In order to simplify the work to follow suppose ô^ir — d, d>0. 
I t will be shown that, if we place certain restrictions on ^1,fa and z, 

, v C a(w)3w 

(24) I — do) 
J c exp (2irio)) — 1 

converges uniformly to zero as R becomes infinite. Let z = r exp (iir) 
and co = h+R exp (i\p) with —Tr/2^\pSTr/2. 

If r < e x p [IT t an t^—Ssec^] , then 

(25) Ji(r, \p) = log r-1 cos \p + TT sin \p - 5 > 0. 

If r < e x p [—7rtan^~ 5 sect/'], then 

(26) b2(r, yf) = log r"1 cos yp — w sin \p — ô > 0. 

Set gO/') =7T tan \p — S sec ^ where 0 ^ ^ ^ 7 r / 2 and ô^7r — d, d > 0 . 
Now g'(\p) = secxp(T s e c ^ ~ ô tan \p). Hence for Sg7r — d and 0 ^ 
< x / 2 , g'(^) is positive. 

As ^ approaches 7r/2, g(\p) approaches +00. Hence the minimum 
value of g(\p) on the interval 0S*P Sir/2 is g(0), that is — ô. In a simi
lar manner we see that the minimum of — ir tan ^—5 sec \p on the in
terval - 7 r / 2 ^ â 0 i s - 5 . 

Hence if r < e x p [— 5 — p] where p>0 but otherwise arbitrarily 
small, (25) holds for O ^ ^ T T / 2 and (26) holds for - i r / 2 ^ £ 0 . 

Denote by b{ > 0 the minimum assumed by bi(r, \p) on the interval 
0S*p Sir/2 and by b{ > 0 the minimum assumed by b^r, \p) on the 
interval - T T / 2 ^ ^ 0 where OSrSexp [ - ô - £ ] , £ > 0 . L e t ô 0 > 0 be 
the smaller of bl > 0 and b{ > 0 . 

Then from (6), (7) and (23) we have 

4 The author is indebted to the referee for this observation. 
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j - ~ r ^ WW* D) I exP [- boRW 
C e x p (2wlCO) — 1 I J - r / 2 

RrhTi(B, D) exp [ - 60<R]T. 

Given an €>0 we can choose an Rx such that for R>R0, Ri and 
O ^ r g e x p [—8—^], p>0, the quantity on the right of (27) is less 
than €. That is, (24) converges uniformly to zero as R becomes infinite. 

Let 7r/2 ^\p^u<7i\ If r>exp [7r tan \{/ — S sec yp] then 

(28) bx(r, ^) = log r-1 cos ^ + TT sin \p - 5 > 0. 

Let —TC<vSip'è. —7r/2. If r > e x p [—x t a n ^ —S seci/'] then 

(29) b2(r, >P) = log r~l cos ^ + TT sin ^ - 5 > 0. 

Denote, for a given q>0 but otherwise arbitrarily small, by F the 
smaller of the numbers T sin w — q and 7r sin tf —g. Let 8 ̂  F. The maxi
mum for T/2^yp^u<T of 7r tan ^ — ô sec \[/ is 7r tan if/ —F sec \[/. The 
maximum for — T<V^^S —TT/2 of —7r tan ^ —5 sec ^ is 7r tan z; 
— jFsecz/. Denote by E the larger of w tan u —F sec u+t and 

7T tan » — i^sec v+t where / > 0 but sufficiently small that £ < 0 . If 
r > e x p (E) then (28) and (29) hold. Suppose now in addition that 
u and v have the property that 

T sin u — F 
(30) cos u > — 

and 

(31) cos v > 

8 + p + t 

rsmv—F 

d + p + t 

Here p and t are positive but otherwise may be chosen arbitrarily 
small. Let z = r exp (IT) with 

(32) exp E g r ^ exp ( - S - ƒ>). 

That there is an interval consisting of more than one point satisfying 
(32) follows from the restrictions (30) and (31) placed on u and v. 
For if u and v satisfy (30) and (31) then E<—ô — p. Denote by 
bl' > 0 the minimum assumed by bi(r} x[/) on T/2^\[/^U<T and by 
bi' > 0 the minimum assumed by bi(r, \[/) on — TKV^X//^ -—T/2 where 
r satisfies (32). Denote by bi' > 0 the smaller of bl' and bi'. Let 
&*>0 be the smaller of b0 and bi'. Then by (6), (7) and (23) if 
—T<vS&^u <T, S^jPand exp j E g r ^ e x p ( — d—p), where u and v 
satisfy (30) and (31) we have 
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7^r\ r do) * B*KTt{B% D) exp ( - b*X)d* 
(33) I J c exp (27rico) — 1 [ J « 

g RrhT2(B, D) exp ( - &*£)(** - t>). 

Given an e > 0 there exists an i?i such that for R>R0, Ri and 
e x p E ^ r ^ e x p ( —5—ƒ>) the quantity on the right of (33) is less 
than e. Hence as R becomes infinite we again obtain (15) since (24) 
converges uniformly to zero. 

I t is now possible to consider again the four cases of §2 ; however, 
for brevity we shall consider only those corresponding to A and D. 
Let us denote these by A ' and D' . 

A': 0 < fa < TT/2, - TT/2 < ^2 < 0, 

D ' : TT/2 < fa S u, v g fa < - TT/2. 

Case A'. Suppose that b^ir — d, d>0. I t will be shown that 
J*\(2)+JV2(s) is regular for z in a domain which includes all or part 
of the segment —exp [ — 5— p]^z<0 in its interior. By a method 
similar to that employed in §2 we could show that for J^(z) to con
verge for a fixed z = r exp (id) it is sufficient that 

(34) 0 < r < exp [d tan fa - Ô sec ^ i ] , 0 ^ 6 < 2TT. 

I t follows then that J+X(z) will converge uniformly for z in any closed 
domain contained in the domain defined by (34). Hence by reasoning 
similar to that employed in §2, it is easily seen that JVi(s) is regular 
for z in any closed domain contained in (34). 

Consider Jf2(z). I t is easily shown that it converges for a fixed 
z — r exp (id) contained in the domain defined by 

(35) 0 < r < exp [(0 - 2x) tan fa - 5 sec fa], 0 ^ 6 < 2T. 

If then z — r exp(iö) is in any closed domain contained in the domain 
defined by (35), J+2(z) converges uniformly and hence represents a 
regular function. The function J^t(z) + J^2(z) will therefore be regular 
in any closed domain contained in the domain common to (34) and 
(35). We have seen that if z = r exp (iir) with exp E ^ r ^ exp [ — ô — p ], 
p>Q, that 

00 

X) a(n)zn = J^(z) + J+2(z). 

But Jtf,i(z)+J4,2(z) has been shown to be regular in a domain which 
includes all or part of the interval exp E ^ r r g e x p [— ô — p] in its in
terior. Therefore J^i(z)+J^2(z)+^l^J0a(n)zn provides the analytic 
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continuation of f{z) to any closed domain contained in the domain 
common to (34) and (35). Hence in this case ƒ {z) will be regular in a 
domain bounded by two spirals as indicated in Figure 4. 

FIG. 4 

Consider case D ' . Suppose S^F and that v and u satisfy (30) and 
(31). Then for exp E ^ r ^ e x p ( — d—p) it follows from (33) that (15) 
holds. I t is easily seen that J^{z) will converge for a fixed z = r exp {id) 
if log r"1 cos \{/i+d sin fa — b > 0. This will be the case if 

(36) r > exp [d tan fa - Ô sec fa], 0 S d < 2TT. 

I t is evident that J^i{z) will converge uniformly for z = r exp {id) in 
any closed bounded domain contained in the domain defined by (36). 
In order that J*2{z) converge for a fixed z = r exp {id) it is sufficient 
that log r-1 cos fa+{d-2ir) sin fa- ô > 0 . That is, 

(37) r > exp [{d - 2T) tan fa - ô sec fa], 0 ^ d < 2ir. 
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Then J*2(z) will converge uniformly for z~rei$ in any closed 
bounded domain contained in the domain defined by (37). Hence 

FIG. 5 

JV1OO+JV2O&) will converge uniformly for z = reie in any closed 
bounded domain contained in the domain common to (36) and (37). 
It is evident that the region common to (36) and (37) contains the 
interval — exp ( — 5 — p)^>z^— exp E in its interior. For E is by defi
nition the larger of TT tan u — F sec u+t and w tan v — F sec v+t, t > 0, 
and if we set 8 =T in (36) and (37) it is clear that both exponents are 
smaller than E. Therefore Jti(z)+J+%(z) +Y^-oaM*w provides the 
analytic continuation oîf(z) to any closed bounded domain contained 
in the domain common to (36) and (37). For the case ^1=^2 this will 
be such a domain as indicated in Figure 5. 
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Hence we have the following theorem. 

THEOREM 2. Let f(z) =]Cn«o#n3n with radius of convergence unity. 
Let the coefficients an be the values taken on by an analytic f unction a(z) 
at z = 0, 1,2, • • • . Suppose a(z) is regular with the possible exception 
of an essential singularity at infinity in an angle with vertex h>0 (non-
integral) on the real axis, including the axis of positive reals in its in-
terior. Let the sides of this angle make angles \f/\ and fa with the axis of 
positive reals. Then if, for z = h+R exp (vp) in this angular opening, a(z) 
satisfies the inequality 

| a(h + R exp ( # ) ) | < exp (*jR)f R > Ro, 

where bSir—d, d>0, and 

A': 0 <fa< TT/2, - TT/2 < ^2 < 0, 

f(z) is regular in the domain common to 

r S exp [$ tan ^i — ô sec ^i] — y, y > 0 

and 

r S exp [(0 — 27r) tan fa — d sec ^2] — 7, y > 0, 

for O ^ 0 < 2 T T . 

For a given q>0 but otherwise arbitrarily small let F be the smaller 
of the numbers T sin u — q and TT sin v — q. Suppose u and v may be chosen 
such that for a given p and t positive but otherwise arbitrarily small 

ir sin u — F 
cosu> 

ô + p + t 
and 

ir sin v — F 
cos v > • 

ô + p + t 
Then if d^Fand 

D': T/2 <fa£u <w, -ic<v£fa<- v/2, 

f(z) is regular in any bounded domain common to 

r ^ exp [9 tan ^1 — 5 sec ^1] + 7 , 7 > 0, 

and 

r ^ exp [(0 — 2w) tan fa — b sec fa] + 7 , 7 > 0, 

where O ^ 0 < 2 T T . 
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4. Conclusions. We note first that if, in Theorem 1, ^ i > 0 and 
^2<0 but otherwise arbitrarily small, that ƒ(2) has 2 = 1 as its only 
singularity on the circle of convergence. 

In part D of Theorem 1 if both ^1 and ^2 are greater than 90° in 
magnitude, that is, the sector of regularity is greater than 180°, we 
have the rather remarkable result that 2 = 1 is the only singularity 
of ƒ(2) in the finite plane. Thus for example the function defined by 
the series 

00 zn 

n-o (n + aY 

where j8 is an integer and a is not equal to zero or a negative integer 
but otherwise arbitrary, has the point z = 1 as its only singularity in 
the finite plane. 

I t is of course clear that we may use the results obtained in a differ
ent manner, that is, if f(z) has a singular point on the circle of con
vergence other than 2 = 1 then a(z) cannot be analytic in an angular 
opening including the axis of positive reals in its interior with at most 
a pole of finite order at infinity. 

If the inequality for a{z) in Theorem 2 is satisfied for every ô > 0 
however small, then under the condition of case D ' of Theorem 2, 
z = 1 is the only singularity in the finite plane. This result5 is analogous 
to the following theorem due to Faber [l]. 

THEOREM (FABER) . If g(z) is an integral function such that 
\g(rei9)\ <etr for an arbitrary positive e and r>r\ the function j\z) de-

fined by ^Ln-ogM2" an& us analytic continuation has the point 1 as its 
only singular point. 

We observe now that the bounding curves 

r < exp [0 tan ^1 — ô sec ^1], 0 ^ 6 < 2TT, 

and 

r < exp [(6 - 2?r) tan ^2 - ô sec ^ 2 ] , 0 ^ 6 < 2?r, 

of (34) and (35) cut the unit circle at the points exp [iô esc ^1] and 
exp [i(2ir+ô esc ^2)]. If now, in addition to the requirements of part 
A of Theorem 2, ^1 , ^2 and 5 satisfy the inequality 

2ÎT > 5(csc ^1 — esc ^2) 

it is easily seen that the region common to (34) and (35) will extend 
beyond the unit circle. We then have the following theorem. 

The author is indebted to the referee for pointing out the analogy. 
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THEOREM 3. If the conditions of Theorem 2 part A are satisfied and 
if in addition the quantities fa, \p% and ô satisfy the inequality 

2x > ô(csc ^i — esc ^2) 

then the circle of convergence is not a cut for the f unction. 
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A NOTE ON THE HILBERT TRANSFORM 

LYNN H. LOOMIS 

The Hubert transform oîf(t), — oo < / < oo, is l / x times the Cauchy 
principal value 

f(x) ~ P Ç -^- dt = lim f 
J _«, t — X ô-*0+ J s 

dt. 
6 t 

If /(OG^P) £>!> then f(x)^Lpy and a considerable literature is de
voted to studying the relationship of such pairs of "conjugate" func
tions to the theory of functions analytic in a half-plane. More to the 
point of the present note is a series of papers studying the Hubert 
transform along strictly real variable lines ([2, 3 ] ; further bibliog
raphy in [2]).1 

Much less is known about f(x) when f(t) £ L i . Plessner found by 
applying complex variable methods to the theory of Fourier series 
that if / ( / ) £ J L I then f(x) exists almost everywhere (see [l, p. 145]). 
Besicovitch [4] proved Plessner's result using only the theory of sets, 
starting from his own previous real variable investigation of the L2 

transform case. S. Pollard [5] showed how Besicovitch's proof could 
be extended to prove the existence a.e. of the principal value of the 
Stieltjes integral 

r°° dF(t) 
f{x)-P\ — l i , 

J _oo t — X 

Received by the editors April 11, 1946. 
1 Numbers in brackets refer to the bibliography at the end of the paper. 


