
LIMIT DISTRIBUTION OF THE MAXIMUM AND MINIMUM 
OF SUCCESSIVE CUMULATIVE SUMS OF 

RANDOM VARIABLES 

ABRAHAM WALD 

1. Introduction. For any positive integral value N, let XNI, XN2, 
• • • » XNN be independent and identically distributed random varia

bles each having standard deviation 1. Let JJLN denote the mean value 
of Xni, and let 

(1.1) SNJC = XNI + XN2 + • • • + XNJC* 

Two cases will be considered: (1) the sequence converges to 
a finite value as iV—>oo ; (2) lim^ooiV1'2/^ = 00. In case (1) we shall 
obtain for any positive constants a and b the limit values of 

(1.2) PN(O) = prob {max 
(Sm,- •• ,SNN) <aNli*} 

and 
P* (a, b) = prob { - bN1'2 < min (SN1, • • , SNN) 

< m a x ( S ^ , • • • ,SNN) < aN"*} 

as N—> 00. In case (2), we shall obtain for any real value c the limit of 

(1.4) QN(c) = prob {max (Sm, • • • , SNN) < Nm + cN1^} 

as iV—> 00. 
In the particular case when JUJV = 0 and a = 6, the limit values of 

(1.2) and (1.3) were recently obtained by Erdös and Kac [ l ] . 1 The 
case when [INT^O, especially when /i^iV1/2 converges to a finite value, 
is of particular importance in the theory of sequential tests of statisti
cal hypotheses. I t will be seen in §3 that the limit distribution of the 
number of observations required by a sequential probability ratio 
test can immediately be obtained from the limit values of (1.2) and 
(1.3), and vice versa. 

2. Proof that the limit values of (1.2) and (1.3) do not depend on 
the distribution of the X's. I t will be assumed in this section that 
JXNN112 converges to a finite value as iV—•> 00. The independence of the 
limit values of (1.2) and (1.3) of the distribution of the X's was 
proved by Erdös and Kac [ l ] in the special case when HN = 0 and 
a = 6. To deal with the more general case considered here, we shall 

Received by the editors, July 29, 1946. 
1 Numbers in brackets refer to the references cited at the end of the paper. 
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follow essentially their method of proof. Let k be a positive integer, 
and let 

(2.1) ^ , " [ 7 ' T ] 0 " - 1.2, • • • , * ) , 

(2.2) PN,k(a) = prob {max (SNNl, •• • , SNNlt) < aN1"}, 

and 

ENr = prob {SNr ^ aN1'1, Sm 

< aN1'2, • • • , SN,r-.i < aNl'*}(r = 1, • • • , N). 

Let, furthermore, e be a positive number. Following Erdös and Kac, 
for Ni <r^ Ni+i we write 

ENr = prob {SNr ^ aW2, SN1 < oN1'*, ••• , S*,r-i 

+ prob {Sur è aWi\ SN1 < aN1'2, ••• , S*,,_i 

<aWl\ \SKN^-SNr\ <eN^}. 

Clearly, the first of these probabilities is equal to ENT prob {| SNNi+1 

Ssr\ èeiV 1 ' 2}. Since 

(2.5) E(SNNi+, - SNr)* g (Ni+i - Ni) + (Ni+1 - #<)*/*, 

by Tchebychef's inequality we have 

prob {\SNNi+t -SNr\ êeiV1'2} 

(2.6) (Ni+1 - Ni) + (Ni+1 - Ni)2w 
< , • 

Since 

Ni+1 - Ni 

^-H«'^e-Fra 
1 1 2 

Û — + — £ — i 
k N k 

we obtain from (2.6) 

(2.7) prob {|SNNi+l -SNr\^ *N*'2} g J L ( i + M-) 

where A is an upper bound of the sequence { N & } . From (2.4), (2.7) 
and the equation 
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(2.8) 

we easily obtain 
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N 

S ^ r = l - PN(0) S 1, 
r==l 

[February 

N 2 / 2A\ 

(2 9) 
+ E E Prob {S*r ̂  atf1'2, 

Sm < oN1'*, • • , S*,r_i < a# 1 / 2 , 

Clearly, the double sum is less than the probability that at least one 
of the sums SNNI, • • • > SNNH exceeds (a — e)N112. Hence 

2 / 2A\ 
(2.10) 1 - PN(a) ^ — - ( 1 + — J + 1 - PNA* - €). 

€2& \ & / 

This inequality can be written as 
2 A . 2A\ 

(2.11) P^,*(a - €) - ^ ( 1 + —) ^ PN(a). 

Let G uu • • • , Gfc& be normally and independently distributed ran
dom variables with mean fx/k112 and variance 1, where/z^limtf-oJV1 '2/^. 
Let, furthermore, 

Rki = Gjfci + • • • + Gh% (i = 1, • • • , ft). 

I t follows from the central limit theorem that 

(2.12) lim Pjv,jb(a) = prob {max ( P M , • • • , Rkk) < ak112}. 
iV=oo 

From (2.11), (2.12) and the relation PN(a) <PNtk(a) we obtain2 

2 / 2A\ 
prob {max (Rkh • • , P**) < (a - e)*1'*} - — ( 1 + — - 1 

c2ft \ ft / 
(2.13) ^ lim inf PN(a) ^ lim sup PN(a) 

g prob {max (Rkh • • • , IE**) < aft1/2}. 

If the distribution of the X's is such that \XN%\ is constant, 
limAr„a0Pjv(a) exists and is a continuous function of a, as will be seen 

2 This inequality corresponds to inequality (1) in [l] . 
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in §3. Let P{a) denote this limit. Using the arguments given by Erdös 
and Kac [l, pp. 295-296], one can show that inequality (2.13) im
plies that for any arbitrary distribution of the X's we have 

(2.14) lim PN(a) = P(a). 

I t will be seen in §3 that also limj^ooiV^a, b) =P*(a , b) exists and 
is a continuous function of a and b when the X's are distributed such 
that \Xni\ is constant. The proof that lim^ooPiv*^, b) =P*(a , b) for 
any arbitrary distribution of the X's can be carried out in exactly the 
same manner as that of (2.14). 

3. Determination of the limit values of (1.2) and (1.3) when the 
distribution of the Xys is such that | XNi\ is constant.3 In this section 
it will be assumed that \XNi\ is constant and that N1,2IJLN converges 
to a finite value as JV—>&. The limits of (1.2) and (1.3) as N—»<*> can 
easily be obtained from some results in the theory of sequential tests 
of statistical hypotheses (see [2] and [3]). 

The sequential probability ratio test for testing a statistical hy
pothesis Ho against an alternative hypothesis Hi is defined as follows: 
Let Hi be the hypothesis that the elementary probability law of the 
random variable X under consideration is equal tofi(x) (i = 0, 1). Let 

z = log 

and 

Zk = log 

fo(x) 

jfo(*Jb) 

where Xk denotes the feth observation on x. Thus, Z\y 22, • • • , ad inf. 
3 This problem is intimately connected with a discrete model for the Brownian 

motion of a particle moving in a field of constant force (that is, gravity). Let a par
ticle starting from the origin move along the #-axis in such a way that in each step 
it can move Ax to the right or Ax to the left with respective probabilities p and 
g = l— p. Let the duration of each step be At. This random walk becomes a model 
of the Brownian motion in a field of constant force in the limit when Ax-»0, At—>0f 

2£_i_»0 in such a way that (Ax)2/2At=*D, (2p — l)/2Ax*=c/4D where c and D are 
physical constants. The problem of finding the probability that the particle should 
remain in an interval around the origin during a time interval (0, t) is equivalent to 
the problem of finding the limit value of (1.3) when | XNi\ is constant. 

The limit values of (1.2) and (1.3) are obtained here without difficulty from some 
previous results of the author [2]. In a subsequent publication [4], M. Kac treated 
the special case of a free particle (c=0) using an interesting and entirely different 
method of attack. His method could be extended to treat also the case when cj^O. 
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are independent and identically distributed random variables. The 
test procedure is carried out as follows : two positive constants a and 
b are chosen. At each stage of the experiment, at the ith trial for each 
integral value i> the cumulative sum 

Zi = z\ + %2 + • • • + Zi (i = 1, 2, • • • , ad inf.) 

is computed. Additional observations are taken as long as — b <Zi<a. 
The first time that this inequality does not hold, the test procedure 
is terminated. Let n denote the smallest integral value of i for which 
Zi does not lie in the open interval ( — 6, a). Hi is accepted if Zn^af 

and Ho is accepted if Zn'è.—b. 
I t has been shown in [2] that for all points / in the complex plane 

for which the absolute value of </>(/) =E(ezt) is not less than 1, the fol
lowing identity holds : 

(3.1) E[ez^4>{t)-n] = 1. 

Assume now tha t z can take only two values, g and — g (g>0) . 
Let p denote the probability that z = g. Then the expected value of z 
is equal to 

(3.2) M = g ( 2 / > - l ) 

and the variance of z is given by 

(3.3) ** - g«[l - (2p - 1)*]. 

Let 

(3.4) m 

(3.5) h(r) 

and 

(3.6) fa(r) - - log i ^ ^ i — 
g 2p 

where r is a purely imaginary variable. Since the absolute value of 

<t>[h(r)] = e-<*2'2*2)* 

is equal to 1, we may substitute /,(r) for t in (3.1). We then obtain 

(3.7) £(**»*«*>«•") = 1 (i = 1, 2). 

For any random variable u and any relation R let E(u\R) denote 

2<r2 ' 
! e-(»

2/2<r*)r _ (ö-(/x
2/<r2)r _ 4 £ ( ! _ £ ) ) l /2 

— log 
g 2P 
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the conditional expected value of u when R holds. For any value r, 
let [r] denote the smallest integer not less than r. Since Zn can take 
only the values g[a/g] and — g[b/g], equation (3.7) can be written as 
follows 

prob izn = - g[—ljart»/*]««<r> EL™\Z» - - « [ — ] ) 

+ prob izn « gf"—JWf/a]i*(r) E{C™\Z% = « [ — ] ) - 1 (* = 1. 2). 

Solving the two linear equations (3.8) in the unknowns ^i(r) 
= prob {Zn = - g[b/g]}E(e™\Zn » - *[&/*]) a n d ^ ( r ) = prob jz* 
= ^[^/i:]}-E(^ ,nT |^n :=g[ö/g]), we obtain 

E(e™) = ^ I (T) + * I (T) 

(3.9) eo[alg]h(T) _|_ e-gV>lg)t2(T) _ eg[alg]t2(r) __ g - f [&/f]*i(r) 

~~ ^[a/^]<i(r)-«r[6/y]«2(T) _ e0[a/f]<2(r)-f [&/f)*i(r) 

We shall be interested in the limiting case when /x and cr take a se
quence of values such tha t 

(3.10) lim ix = 0, lim <r = 0 and lim— = J, 

where d is a finite value not equal to 0. I t follows from (3.2) and (3.3) 
that (3.10) is equivalent with 

2p- 1 
(3.11) lim (2p - 1) = 0, lim g = 0 and lim — « rf. 

I t can easily be verified that 

1 e~<"2/2*2>*(l ± (1 - 4f (1 - J ) ^ V ) r ) i / i ) 
— log 
g 2£ 

converges to 

(3.12) -<*(1 ± (1 - r)1 '2) 

uniformly over any finite r-interval as /*, cr and /*/<r2 approach the 
limit values given in (3.10). Hence the characteristic function of m 
given in (3.9) converges to 
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e-ad(l-(l-r)l/2) l ^6d(l+(l-r)l/2) _ e-ad(l+(l-T)l/2) _ e&d(l-(l-T)l/2) 

(3.13) ^ ( r )= ; 
V ' T W

 e-ad(l-(l-r)l/2)+&d(l+(l-r)l/2)_e-ad(l+(l-r)l/2)+6d(l-(l-r)l/2) 

uniformly over any finite r-interval as /x, a and /x/o*2 approach the 
limit values given in (3.10). 

The characteristic function yf/{r) has been inverted in [2] yielding 
the limit distribution of m. Denote this limit distribution by F(u), 
tha t is, F(u) = prob {m <u} where m is a random variable whose char
acteristic function is equal to t^(r). The value of F(u) depends on the 
constants ad and bd, since these constants are involved in the char
acteristic function ^ ( r ) . To put this dependence in evidence, we shall 
also use the symbol F(u\ ad, bd). 

We shall now express the limit value of PN*(a, b) in terms of 
F(u\ad, bd). I t is assumed that XN% can take only two values, gN 
and — gN (gN>0). The values gN and prob { XN%: = gN} are chosen so 
that the standard deviation of XNÎ is equal to 1 and the mean value 
of XN% has the prescribed value UN. We consider the case when 
limJY=S!OOjLtisriV1/2 = d7^0. Let the distribution of z be equal to that of 
XNX/N112. The mean and standard deviation of z are then equal to 

(3.14) ix^w/N1'2 and a = 1/iV1'2 

respectively. Hence, the limit values of /x, <r and /x/o*2 as iV—>oo are 
equal to those given in (3.10). Clearly, 

p*(a, b) = prob {n> N} 

(3.15) 
= prob <m > N> = prob <m > > 

Since limN^^NN112 = d and since the limit distribution F(u) of m 
is a continuous function of u, we obtain from (3.15) 

* / d21 \ 
(3.16) lim P*(a, b) = 1 - W — ad,bd) (d ̂  0). 

iv=oo \ 2 I / 
The above formula is valid for d^O .We shall now determine the 

limit of PN*(a, b) when d = 0, that is, when limN^^NN112 = 0- Since the 
value of PN*(a, b) depends on the value of dj\r=/Xi\riV1/2, we shall put 
this in evidence by writing PN*(O>, b\dN). 

Clearly, for any d 5^0, we have 

PJka + 2[d|f J + 2 M | 0 ) >!$(<*,& I <*) 
> l>^(a — 2 J d |t ft — 2 J d IJ 0 ) . 
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I t follows from (3.17) tha t 

liminf p£(a + 2 M , i + 2 M I 0) }£ 1 - F[ — \ ad, bd) 
AT-» \ 2 / 

(3.18) 
è l i m s u p P * ( a - 2 | d | , » - 2 |<* | |0 ) . 

If MJV — O, it follows from the first limit theorem of Erdös and 
Kac [ l ] tha t lim^-»*, prob {max (SNU * • * > SNN) < aN112} and 
lim^-oo prob {min (SNU * • • , SNN)> — bN11*} are continuous func
tions of a and b. This implies that lim supjv««oo i V ( 0 , b\0) and 
lim infisr̂ oo PN*((I, b\ 0) are continuous functions of a and b, and that 

lim lim sup [P*N(a + 2\ d\, b + 2\ d\\0) 
d=0 2V=oo 

(3 19) 
-P*N(a- 2\d\,b- 2\ d\\0)] « 0. 

I t follows from (3.18) tha t 

lim sup P*N(a + 2|<*| ,J + 2 | d | | 0 ) 
JV=oo 

- lim inf P* (a + 2|<*|fft + 2 |<* | |0) 

g lim sup [p£(a + 2|<*|,ft + 2 |<*| |0) 

- P j ( a - 2 | J | f J - 2 | d | | 0 ) ] . 

Hence, because of (3.19), we have 

lim [lim sup P* (a + 2\ d\, b + 2\d\\0) 

- liminf P%(a + 2\dl b + 2\ d\\0)] = 0. 
tf=*oo 

The existence and continuity of P*(a, b\ 0) = limjv..oo PN (a> &| 0) follows 
from the above equation and the continuity of lim sup^-» P# (a, &| 0) 
and lim infiv«oo PJJ(a, &|0). Hence, because of (3.18), we have 

(3.20) P*(a, b | 0) « lim |"l - F ( — L* f fcm. 

Let {djsr} be a sequence of values such tha t lim# »oo dx = 0. Substitut
ing dN for d in (3.17) and letting N~> oo, we obtain 

(3.21) lim P%(a,bldN) = P*(a,b\0) = lim ["l - P ( — Lw*f w Y l 
#=*«> d-o L \ 2 I /J 
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We shall now show that 

(3.22) lim PN{a) = lim lim P*(a, b). 
# = 0 0 ft=xOO # 3 3 00 

To prove (3.22), it is sufficient to show that 

(3.23) lim lim inf prob {min (SNh • • • , SNN) > - bN1^} = 1. 
&=oo JV=oo 

Let r be an upper bound of | Nll2fxN\. Clearly, 

prob {min (3*i, • • • , 3JW) > ( - 6 + ^ t f 1 ' 2 } 

S prob {min (S™ • • • , SNN) > - bN1^} 

where SNi = SNi — ip*N- Since according to the first limit theorem of 
Erdös and Kac [l ] we have 

lim lim prob {min (3*1, • • , SNN) > ( - b + ^N1'2} 
J=oo JV=oo 

( 2 \ l / 2 /» 6-r 
— ) I <rt2*2dt=l, 

(3.23) follows from (3.24). Hence (3.22) is proved. 
If lim (M/Ö"2) = d > 0 and b—» oo, the characteristic function \p{r) of m 

given in (3.13) converges to 

(3.25) I/>*(T) = e««*u-u-r)i/*)B 

This characteristic function has been inverted in [2] and the corre
sponding distribution function of m is given by 

ad 9 9 

E{m)dm = e-{aWiim)-m+addm (0 S m < oo). 
2T(l/2)m*>2 

Hence 

(3.26) lim PN(a) = prob <m>—\ = I H(m)dm. 
i\r=oo i 2 ; •/d2/2 

We can summarize the results of this section in the following theo
rem. 

THEOREM. If lim^oo iiNNll2 = d7*0, the limit value of the probabil
ity (1.3) is given by 

P*(a, b\d) = prob <m > — i 
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where m is a random variable whose characteristic function is given in 
(3.13). If d = 0, the limit value of (1.3) is equal to l im^o P*(a, b 
For any finite valued j the limit valueof (1.2) isegwaZ/0lim&=sooP*(a, b 
If d>O, the limit value of (1.2) is given explicitly in (3.26). 

d). 
d). 

4. Derivation of the limit value of (1.4) when Km/** iV1/2 = <*>. In 
this section we shall determine the limit value of the probability 
QN(C) defined in (1.4) assuming that 

(4.1) lim UNN1'2 « oo. 

We can assume without loss of generality that fxN > 0 for all N. Let r 
be a positive number and let X(iV) be a positive integral-valued func
tion of N such that 

N - X(AO 
(4.2) \(N) < N, lim — = 0, 

tf=«o N 

N - \(N) 
(4.3) lim ixN = rf 

where oo ^rr>r. I t follows from (4.1) that such a function \(N) ex
ists. Because of (4.2) and (4.3) we have for sufficiently large N 

prob {max (SNi, • • • , S mm) < #MJV + cN1/2} 

(4.4) > prob {max (SNh • • • , SNMN)) < \(N)w + (c + r)N^2} 

> prob {majc (SNi, • • • , SNMN)) < (c + r)N^2} 

where 

(4.5) S Ni = S Ni — Wv. 

Let €>0 . Since for /XAT = 0 we have l im^^ limjv=oo PN(C) = 1, there 
exists a fixed value r0 (independent of N) such that 

(4.6) lim prob {max (3*1, • • • , SNXW) < (c + r0)N^2} =* 1 - —-
iv=«> 2 

Putting r — r0l we obtain from (4.4) and (4.6) 

(4.7) prob {max (SNu • • • , ^ m ) < #M* + cN"2} £ 1 - € 

for sufficiently large iV. Hence 

prob {max (Sari,--- ,SW) < ffw + ctf1/2} 

(4.8) g prob {max (SNMm+1, ••• ,SN) <Nm + ciV1'2} 

g prob {max (Sm, • • • , Saw) < 2V>* + ciV1'2} + e 
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for sufficiently large N. From (4.2) and the first limit theorem of 
Erdös and Kac [l , p. 292] it follows easily that 

Km prob {max (— SNN + S]\T,JV-I, • • • , — SNN 

( 4 ' 9 ) +3*.xc*)+i) <6N"*} « 1 

for any positive 8. Since the inequality 

max (— SNN + «SV.iyr-i, • • • , — SNN + SNMN)+I) < 5iV1/2 

implies the validity of max (5jv)x<iv,+i, • • • » SNN) ^SNN+SN112, we 
obtain from (4.9) 

(4.10) lim prob {Siw^max (SNMW+I, • • • , SN^^SNN+SN112} = 1 . 
iV=00 

Since 

(4.11) lim prob {SNN < N»N + cN1'*} - -——- f e~^2àt, 

we obtain from (4.10) 

—r 
^ lim sup prob {max (SN,\(N)+h • • • , SNN) < NfxN + cNt/2} 

N~» 
è Hm inf prob {max (SN,\(N)+U * ' , SNN) < Nm + cN112} 

1 /• c-« 
è I ér<2/2<//. 

( 2 T ) 1 / » J ^ 
Since 8 can be chosen arbitrarily small, it follows from (4.12) that 

lim prob {max (SNMN)+U ' ' ' 
, S w ) <Nm + cN1'*} 

(4.13) 
1 /* " 

I e-'2/2Ü. 
( 2 * ) l ' V _ 

Finally, it follows from (4.8) and (4.13), since € can be chosen arbi
trarily small, tha t 

lim prob {max (Sm, • • • , SNN) < NUN + cN11*} 

(2*)' 

(4.14) 

= — — f'<r*i*dt. 
(2,r)i/2J_M 
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NOTE ON THE ZEROS OF P - (cos 6) AND dP-(cos 0)/d0 
CONSIDERED AS FUNCTIONS OF n 

C. W. HORTON 

In many physical problems in which the boundary conditions are 
specified over the surface of a cone, it is necessary to know the roots 
of the equations 

(1) Pn (cos 6) = 0 

and 

(2) dPZ (cos 6)/dd = 0 

considered as functions of n. This problem has been solved by 
Bholanath Pal.1 In these papers he develops infinite series for the 
roots n which converge rapidly and are very suitable for numerical 
computation. In deriving his solution Pal introduced a parameter k 
which takes on successive integer values and thereby yields successive 
roots of the equations. 

I t is the purpose of this note to point out that the value k = 1 with 
which Pal commenced the series does not always give the first root 
of the equation, and sometimes it gives a number which is not a root 
of the equation. For example, in treating the equation P^(cos 6) = 0, 
Pal gives three roots: w = 4.77, 2.26, 1.52, corresponding to values of 
0 equal to 15°, 30°, 45°, respectively. That these values are not roots 
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