
SOME PROBLEMS IN CONFORMAL MAPPING 

D. C. SPENCER 

1. Introduction. Attention will be confined to a group of problems 
centering around so-called schlicht functions—that is, functions regu
lar in a given domain and assuming no value there more than once. 
The type of problem we consider involves determination of precise 
bounds for certain quantities depending on the function/, as ƒ ranges 
over the schlicht functions in question. Since, for suitable normaliza
tion of the functions at some fixed point of the domain, the resulting 
family of functions is compact or normal, the extremal schlicht func
tions always exist and the problem is to characterize them. 

Interest was focused on this category of questions by the work of 
Koebe in the years 1907-1909, who established for the family of func
t ions /o f the form ƒ(z) = z+a2Z2+asz

z+ • • • , schlicht and regular in 
\z\ < 1 , a series of properties, among them the theorem of distortion 
bearing Koebe's name. This theorem asserts the existence of bounds 
for the absolute value of the derivative ƒ'(s), these bounds depending 
only on \z\. Further efforts were directed toward finding the precise 
values of the bounds asserted by Koebe's theorem, but success was 
not attained until 1916 when Bieberbach, Faber, Pick and others 
gave a final form to the theorem of distortion. At the same time the 
precise bound for | a2\ was given, namely 2, and the now famous con
jecture was made that \an\ ^n for every n. Since 1916 this group of 
problems has attracted the attention of many, and there is now a con
siderable literature. 

The present state of this sphere of questions will be described briefly 
in a general sort of way, and a few outstanding problems will be indi
cated, but no at tempt at completeness has been made. 

2. The coefficient problem. Let 5 be the family of functions 

(2.1) ƒ(*) = z + a2z
2 + azz

z + • • • 

which are regular and schlicht in \z\ < 1 . The most famous problem 
concerning these functions is whether \an\ ^n (n~2, 3, • • • ), with 
equality for any n only in the case when 

(2.2) ƒ(*) = Z = z + 2Vz* + 3*8» + • • • , | n | - 1. 
(1 - rjz)2 
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I t is this problem which has stimulated much of the research leading 
to the various methods, in particular the method of parametric repre
sentation given by Löwner [7 J1 in 1923 and the recent methods (see 
[ l l , 12]) in which the extremal function is compared with infinites
imal variations more general than those provided by Löwner's 
method. 

There are several short proofs that \an\ ^n (n — 2, 3, • • • ) when 
all the coefficients are real, and a simple proof, due to Rogosinski [lO], 
will be sketched here. Without loss of generality we may assume that 
ƒ is regular and schlicht in \z\ ^ 1 , for every schlicht function is the 
limit of such functions. Since ƒ has real coefficients, it takes conjugate 
values for conjugate values of z and so the map of | z\ < 1 by ƒ is sym
metrical with respect to the real axis. Since ƒ is schlicht, Im ƒ and 
Im s have the same sign in \z\ ^ 1 . The function 

(2.3) l—^-f(z)=p{z) 
z 

therefore has a positive real part in \z\ < 1 since on the boundary we 
have, writing z = ei6, Re p(eid)*=2 sin 0-Im f(ei9)^0. I t follows that 
the coefficients of p are majorized by those of the function 

1+z 
« 1 + 2s + 2s2 + . . . . 

1 — z 
Since the coefficients of this function as well as the coefficients of the 
function 

(2.4) — 1 — = s + *3 + s 5 + . . . 
1 — z2 

are positive, we see at once, multiplying both sides of (2.3) by (2.4), 
tha t the coefficients of ƒ are majorized by the coefficients of the func
tion 

(2.5) iA
 Z

 N9 - z + 2*2 + 3z* + . • . . 
(1 - z)2 

Similarly, \an\ ^n when ƒ maps \z\ < 1 on a star-like domain. In both 
cases equality is attained only when ƒ is of the form (2.2). We see 
here a connection between schlicht functions and functions with posi
tive real part, a connection that will be further emphasized in §3 
below. 

In the general case \an\ <en (see [6(a)]), but the only known pre-

1 Numbers in brackets refer to the bibliography at the end of the paper. 
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cise inequalities are: (4X2] ^ 2 and \az\ ^ 3 , with equality in either case 
only if ƒ has the form (2.2). I t is comparatively easy to prove that 
I #21 rg2, and many proofs of this result are known. The inequality 
I a-31 ̂ 3 lies much deeper, only two essentially different proofs being 
known. The first proof was given by Löwner [7] in 1923, using his 
method of parametric representation; the second, recently given, 
makes use of methods quite different from Löwner's (see [11(a)]). 

Although the problem of obtaining precise bounds for the coeffi
cients has attracted the most attention, the central problem of the 
theory is really the so-called coefficient problem. Given the point 
(a2, a3, • • • , an), we say that 

ƒ(*) = z + h*? + hz* + • • • 

belongs to the point (#2, #3, • • * , a>n) if ƒ is regular and schlicht in 
|*| < 1 and if 

Conversely we say that the point belongs t o / . The wth region of varia
bility Sn is the set of points (a2, «3, • • • , an) in a Euclidean space of 
2^—2 real dimensions each of which belongs to some ƒ(3). The in
terior of Sn is a bounded, simply-connected domain containing the 
origin a2 = 0, a3 = 0, • • • , an = 0, and 5„ is the closure of its interior. 
The only one of these regions which is trivial is 52, and it is the circle 
\a2\ £ 2 . 

The coefficient probl em is the problem of finding 5 n f or n = 2 ,3 , • • • ; 
this problem was introduced by Bieberbach. 

A method has recently been developed which characterizes 5 n for 
general n—explicitly for n = 3 and implicitly for n > 3.2 The boundary 
of 5 3 may be expressed by equations involving only elementary func
tions, but for n>3 the boundary is complicated and cannot be so ex
pressed. We therefore state the result only for w = 3. 

We begin with the trivial observation that, given any schlicht f unc
t ion/(s) = 2+a222+a323+ * * • , the function 

er»f(e»z) = z + a2e*z* + aze™z% + • • • 

is also normalized and schlicht. Hence if S^ is the subset of 53 for 
which a,2 is real, the whole of 5 3 is the set of points (a2e**, dze™), 
0 ^ 0 <7T, where (a2, a3) belongs to S(£\ In other words, 53 is obtained 
from S^ by rotations. Since the region S^ is symmetrical with re-

2 See [11(c) ]. The region of variability of (a2, <*s) when o2 and a8 are both real had 
been given previously by Peschl [8]. 
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speet to the plane #2 = 0, it is sufficient to consider the part of the 
boundary of s£0) which lies in the half-space a 2 ^ 0 . This portion of 
the boundary of S^ is made up of the following two analytic surfaces 
plus their intersection: 

(1) Suppose tha t 0 ^ a S ir/2. Let —2 (sin a — a cos a) £g JU, 
:g 2 (sin a—a cos a) and define X = 2 cos a {log (cos a) — 1}. Then 
one of the two surfaces is defined by 

a* « (X2 + M2)1'2 

(2.6) X - i / i 
az - X2 + JU2 + 2 cos a{\ - *» + (2 cos2 a + 1) 

X + f/* 
Any function w=f(z) belonging to a point of this surface generally 
maps | z I < 1 on the w-plane minus a forked slit composed of a ray 
arg (w) = constant extending from «;= oo to some finite point where 
there is a fork composed of two prongs which form angles 2ir/3 with 
the ray. On the edge of this surface one or both prongs degenerate 
to a point. If a = 7r/2, w=f(z) maps | z\ < 1 on the w-plane minus two 
rays arg (w) = constant which make an angle TT at w = <*> ; in this 
case a,2, az lie on the parabola #2 =M» Ö3=/X2 — 1, 0^jüt^2. 

(2) Suppose that 0 O < l , - 7 r / 2 ^ 0 g 7 r / 2 . Let 

p2 = 1 + 6r2 + H + 4r(1 + r2) cos 2tf>, 
2f sin 2<f> / T w\ 

tan a = ( < a < — ), 
1 + 2r cos 2tf> + r2 \ 2 2/ 
(1 + r)2 (1 ~r)2 

Cx -s c o s A ç*2 = sin $, 
2r 2r 

P 
X = Ci log + C2a - 2 cos 0, 

(1 + r)* 
p 

/x = C2 log — - Cia + 2 sin 0. 
(1 - r)2 

The second analytic surface is defined by 

02 = (X2 + /z2)1'2 

«3 = X2 + M2 + (Ci + fC«)(X - t/i) 

\ X — ifx 
+ (r + — + cos 2* Y 

X + ijit 

If ƒ(2) belongs to a point on this boundary surface of 5|0), then 
w=/(z) maps \z\ < 1 on the w-plane minus a single curved analytic 
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slit extending from w == <*> to some finite point. As r—»0, the slit tends 
to a straight line arg (w) = constant and the corresponding ƒ tends to 
z/{l+er»z)K Asr->1, 

X —> 2 cos <t>{log (cos <£) — 1}, ju —» 2(sin <j> — <j> cos 0). 

That is, r = 1 corresponds to the edge of intersection of the two sur
faces. For functions w—f(z) belonging to this edge, one of the two 
prongs of the fork is absent. 

Even in the case w = 3 w e observe that the equations defining the 
boundary of 5 3 are sufficiently complicated that it is difficult to in
fer directly from them tha t |a3 | g 3 . Since for n>3 the situation is 
much more complicated, the precise bounds for the coefficients, a 
specific question about these regions, remain undetermined. Other 
questions concerning these regions may be asked; for example, what 
are the maximum and minimum distances of the boundary of Sn from 
the origin (distance from the origin being equal to G C ^ I ^ I 2)1/2). 
In the case of S3, the maximum distance of the boundary from the 
origin is (22+32)1 / 2 = 131/2, attained only for functions of the form 
(2.2), and the minimum distance of the boundary from the origin is 
31/2/2, attained only for functions of the form 

z 1 1 . . 
(2.8) = z + yz2 - -v2zz + • • • , U « 1-

1 - rjz/21^ + 17V 21 '2 2 { l 

To each boundary point (a2y aZl • • • , an) of Sn there belongs one 
and only one function w *=f(z), and this iunction maps the unit circle 
on the w-plane minus piecewise analytic slits. Given any complex 
numbers p2, pz, • • • , pn, XX2I P*\2 = 1» let 

L = Re fad* + pzaz + • • • + pnan) 

= (p2(t2 + p2&2 + * * ' + pndn + jMn)/2. 

If the maximum value of L in Sn is Af, then Sn lies entirely on one 
side of the (2n — 3)-dimensional hyperplane L~M. Since Sn cannot 
be convex for w>2 , such a supporting hyperplane can touch the 
boundary only a t a well-defined subset of boundary points of Sn- Any 
function w=f belonging to a point of this subset maps \z\ < 1 on the 
w-plane minus one or more analytic slits meeting at infinity and each 
of these slits has no finite critical points and is therefore unforked. 

If for two different sets of numbers £2, pz, • • • , pn the correspond
ing Us given by (2.9) both have a local extremum at the same bound
ary point (a2, as, • • • , an) of Sn, then the function ƒ belonging to this 
point is algebraic. These algebraic boundary functions map \z\ < 1 
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onto the plane minus slits. I t would be interesting to study the char
acter of algebraic schlicht functions which map onto slit regions. 

The method used to characterize Sn has been sketched in [11(c)] 
and a detailed exposition is in course of preparation by A. C. Schaeffer 
and the author. Therefore, no attempt will be made to describe the 
method here. We remark only that the starting point of the method is 
to maximize a certain function F(a,2, â2, a3, âz, • • • , any ân) in 5 n , 
the maximum being attained at a boundary point {a^ a3, • • • , an). 
Iff belongs to this boundary point, a differential equation for / is ob
tained by making infinitesimal variations of this extremal function. 
The method then consists of a study of the resulting differential equa
tion. 

In the next section (§3), Löwner's method of parametric represen
tation will be briefly discussed. This method provides an e-variation 
of any schlicht function, but the variation is one-sided in that e can 
have only one sign. This defect does not occur in the more powerful 
variational methods recently developed (see [ l l ] and [12]). 

3. Relations between coefficients of schlicht functions and coeffi
cients of functions with positive real part. In the case of functions 
with positive real part, the regions of variability of the coefficients 
have been obtained by Carathéodory [ l ] , Toeplitz [13], and others. 
If numbers 71, 72, • • • , 7n-i are given, then there is a function 

(3.1) p(z) = 1 + 2 Ê M ' 

which is regular and has positive real part in \z\ < 1 with 

c\ = Yi> £2 = 72, • • • , cn-\ = Yn-i 

if and only if the Hermitian form 

n w 

(3.2) H = ]£ ]C YM-^V 

is positive semi-definite, where 7o = 1 and 7_fc = 7 * is the complex con
jugate of 7*. In geometrical language, there is a function p{z) with 
Re p(z)>0 in | s | < l if and only if (71, 72, • • • , 7n-i) lies inside or 
on the boundary of the smallest convex region containing the curve 
eie, e2id, • • • , ei(n~1)ô (6 real), and the interior of this region is charac
terized by the property that H is positive definite there. The nth re
gion of variability Pn is the set of points (ci, c% • • • , cn-i) each of 
which belongs to some p(z). The points of Pn have the one-to-one 
parametric representation 
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(3.3) n_x ~ 

E / * / S 1, 0 ^ 0,- < 2ir, 
y-i 

and the boundary of Pn is characterized by the condition that 
E J - I M / 5 * ! - To each boundary point defined by (3.3) there belongs 
only one function, namely 

«—I J JL (>Mjz n—1 

(3.4) p(z) - E M / » — > E M / - 1. 
* . i 1 - e**z /« i 

Rogosinski [lO] has studied the class of functions 

f(z) = z + «222 + a3z
8 + • • • 

which are regular for \z\ < 1 and have the property that Im ƒ and 
Im z have the same sign in \z\ < 1 , a property which implies that all 
the coefficients are real. We have seen that schlicht functions with 
real coefficients have this property, and the argument used above to 
prove that \an\ ^n for schlicht functions with real coefficients ex
tends at once to this wider class of power series, a class of functions 
which Rogosinski has called "typically-real." In fact, if ƒ is typically-
real then 

(3.5) Ll£.f(z)-p(z) 
z 

is a function of positive real part, and conversely. From this simple 
relation the variability regions Tn for the coefficients of typically-real 
functions are easily obtained from the corresponding regions Pn for 
functions with positive real part. I t is readily seen that Tn is the small
est convex region containing the wth variability region for schlicht 
functions all of whose coefficients are real. This raises an interesting 
question: what is the smallest convex region containing Sn itself? 

A domain containing w = 0 is said to be star-like (with respect to 
w = 0) if any point of it can be joined to the origin by a straight-line 
segment which lies in the domain. The variability regions S* for the 
subfamily of schlicht functions which map \z\ < 1 onto star-like do
mains are also related to the regions Pn in a simple way. This follows 
from the fact that if ƒ maps | z | < 1 onto a star-like domain, then 

ƒ(*) (3.6) J-L-piz), 
zf(z) 



424 D. C. SPENCER [May 

where p(z) is regular and has positive real part in \z\ < 1 . Conversely, 
if p(z) is regular and has positive real part in | s | < 1 , then 

(3.7) / « - « e x p I —~rd^ 
J o tp{£) 

is regular in \z\ < 1 and maps the unit circle on a star-like domain. 
Writing 

00 

p{z) - 1 + 2 X ) ^ V , 
r - l 

we have 
2 

^ ^ Ù2 = — 2Ci, #3 = ~" 2̂ + 4Ci, 
(3.8) s 

a4 = ( - 2c3 + Udc2 - 24*0/3, 
The parametric representation of Pn given by (3.3) may be used to 

define a parametric representation of Sn*. Let 

( 3 . 9 ) ah = A*(01, 02, • • • , 0n-l î Ml, M2, * • ' , Mn-l) 

be the £th coefficient of the function 

(3.10) ƒ(*) = — , /*, ^ 0, 2 > , ^ 1, 

II (1 ~ e**z)** 
y = i 

which maps |JS| < 1 on a star-like domain. As the parameters vary 
over the parameter space, the point (a2, as, • • • , an) sweeps outSw*. 
The boundary of 5„* is characterized by the condition 

(3.11) Z \ , = 1, 
p « i 

and to each boundary point defined in this way there belongs the 
unique function given by (3.10). In this case the function (3.10) maps 
\z\ < 1 on the plane minus q ( l ^ g ^ w — 1) straight-line slits pointing 
toward the origin, and adjacent slits form at oo an angle equal to 2JJLVTT. 

The intersection of the boundary of Sn with Sn* is the subset of the 
boundary of Sf* for which 

AM n~~"l 

(3.12) fxv =
 v y £ w „ = * — 1, 

k — 1 v«i 

where m, and k are integers, ra„^0, 2^kSn. 
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The method of Löwner [7] provides a deeper connection between 
schlicht functions and functions with positive real part. Heuristically, 
the method may be briefly described as follows. 

For each r, O ^ r g T ( T X ) ) , let S(z, r ) , 5(0, r) = 0 , be a schlicht 
function mapping \z\ < 1 onto a star-like domain D*. Then for any 
t>0, the values of the function £""*.S(2, r) lie inside D* and so the 
function $=$(2;, t, r) =5~1(e""'5(2;, r ) , T) , where S"1 denotes the func
tion inverse to 5, is regular, schlicht and bounded by 1 in l^j < 1 . We 
have 

dt 

and so 

S(z, r) 

S'(Z,T)' 

(3.13) S-K(r"S{z, t), t)=z- ^Aràt + o(At). 
S (z, t) 

Now let us define a one-parameter family of functions 

(3.14) g(z, t) = y(t)(z + a2(t)z* + az(t)z* + • • • ) , y(t) > 0, 

which are regular and schlicht in \z\ < 1 for O ^ ^ T and such that 

(3.15) g(z, t + At) = g(S-Ke-AtS(z, /), /), t). 

By (3.13) 

dg(z, t) 
(3.16) g(z, t + At) = g(z91) - 2 - ^ — - p(z, t)At + o(At) 

dz 
where p(z, t)=S(z, t)/(zS'(z, t)) has positive real part in \z\ < 1 . Di
viding by At and letting At approach zero, we obtain the differential 
equation 

(3.17) — - — = - z — - — p ( z , t). 
dt dz 

If we divide both sides of (3.17) by z and then take 2 = 0, we have 

( 3 .18) JU- „ _ 7 ( / ) , y{t) = 7 ( 0 ) r « . 
at 

The equation (3.17) may also be given a direct geometrical inter
pretation. Suppose tha t g(z, t) and p{z, t) are both regular and 
Re p>0 in | z | ^ 1 for O g / ^ T . Taking 3 = e" in (3.16) we have 
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dg(eie, t) 
(3.19) g(é*, t + At) = g(e*t t) + i - p(e", t)At + o(At). 

dB 
The map D% of | ̂  | < 1 by g(z, /) is a domain bounded by an analytic 
curve; the quantity idg(ei$, t)/dO has the direction of the inner normal 
to the boundary of Dt at the point w = g(eie, t) and idg{eiB, t)/dd 'p(eie, t) 
is a vector which makes an angle less than TT/2 with this inner normal. 
Equation (3.19) states that the boundary point g(ei9, t+At) of the do
main Dt+At lies inside Du Thus, as t increases from 0 to T, the domain 
Dt shrinks and, if t' <tn', Dv, QDt>. Writing 

00 

(3.20) p(z,t) = l + 22>»(0«', 

and equating coefficients of 2n(w^2) in (3.17), we obtain 

da (t) n~"1 

(3.21) — — + (n-^ l)on(t) = — 2X2 PO,(t)c»-,(t). 
dt y»i 

Integrating this equation between the limits / ' and /" , 0 ^t' <t" g T, 

(3 22) c l" n"1 

= - 2 I e^^^pav(r)cn^(r)dr. 
J t' v=l 

In particular, 

«'"«!(*") ~ «''«i(«0 = - 2 ƒ erCi(T)dr, 

(3.23) eu"a3(t") - eu'a»(f) *' 

= - 2 f eirct(r)dr + e2<"a2(*")2 - e2 ' 'a2(02-

If the sense of the parameter / is reversed by replacing t by T—t, 
and if (for simplicity) we again write c,(t) for c,(T—t), a,(t) for 
a,(T—t), the formula (3.22) becomes 

e-(»-»'"an(t") - «-<-»«'a»(0 

(3.24) 
- 2 f «r<»-i>'£ vav{r)cn-,{T)dr. 

J V v~*l 

Sometimes one, sometimes the other, of these two formulas is more 
convenient. 

The above method establishes a curve (a2(/), öa(0» * * • » a>n(t)) con-
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necting two points of Sw, and this curve is the transform of a corre
sponding curve (ci(r), ^ ( T ) , • • • , ^n-i(r)) in the coefficient region Pn 

of functions having positive real part in |JS| < 1 . 
In Löwner's formulation (see [7]) the function p(z, t) is restricted 

to be of the form 

(3.25) p(z, t) = (1 + *(*)s)/(l - *(*)*), 

where ic(t) is a continuous function of t} \K{()\ = 1 . In this case the 
iteration defined by (3.15) introduces a continually lengthening 
Jordan-arc slit; that is, if / " > / ' , then Dv* (the map of | s | < 1 by 
g(zt /")) is obtained by removal of a slit from Dt> (the map of \z\ < 1 
by g(z, / '))• Actually, Löwner's parameter t moves in the opposite 
sense (corresponding to (3.24)), in which case the inclusion relation 
between D%* and Dt" is reversed, and he showed that any schlicht 
function of an everywhere dense set can be connected to the function 
f(z)=z by a curve corresponding to a function p(z, t) of the form 
(3.25) which depends continuously on /. If the functions p(z, t) are 
not restricted to be of the form (3.25) and if the continuity in / is 
dropped, then3 it can be shown that any schlicht function can be 
connected to f(z}—z9 but it is not known that this can be done 
using only functions of the form (3.25), even without continuity. 

Take / " = r , *' = 0 in (3.24), and let the value T of the parameter 
correspond tof(z) =z, in which case ak(T)=0 (& = 2, 3, • • • ). Writing 
ajb(O) =dk (k = 2, 3, • • • ), we then obtain, by recursion, the formulas : 

(3.26) a2 = - 2 f e-TCi(T)dT, 
J o 

(3.27) a3 = - 2 f e-^c2{T)dr + 4 ( f e^Cl(r)dr\ , 

e-ZTcz{r)dr + 12 I e~2rc2(r)Jr- | e-TCi{r)dr 
o •/ o J o 

ƒ
• T /» r 

- 8 ( ƒ e-Mr)dr J , 

8 An unpublished result of A. C. Schaeffer and the author. 
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#n s=s / J \ I J J- a i « a • • • ajfe 

I • • • I exp — X) avTv 

* I I Cav{rv)dTldT2 • • • ^T*, 
v = l 

where 

r a i ^ . . .« f c = 2A(^ — «i)(n — ai — a2) • • • (n — ai — «2 — • • • — «*), 

the ai, a2, • • • , a& being positive integers with sum n — l. 
Now the interior points of Sn are characterized by the property 

that bounded functions belong to them. Given an interior point 
(a2, a3, • • • , a») of Sn, let the minimum maximum modulus of all 
functions ƒ belonging to this point be e '( /^Q). The set of points of 
Sn which are representable by the formulas (3.26) to (3.29), in which 
the CV(T) 0> = 1, 2, • • • , n — 1) are measurable functions of T, is ex
actly the set of interior points of Sn corresponding to the values t^T. 
If, therefore, we take T= oo in these formulas, any point of 5wmay 
be given this integral representation for suitable choice of the curve 
(ci(r), £2(r), • • • , cn-i(r)). More generally, given any schlicht func
tion f(z) = z + a2z

2 + azz
z + • • • , there is a function p(z, r ) 

= 1+2^^>
:SS1CV(T)ZV such that the coefficients an (« = 2, 3, • • • ) are 

given by (3.29). Conversely, given any function p(z, r ) , the coeffi
cients denned by (3.29) belong to a schlicht function. The correspond
ence between f unctions ƒ (2) and p(z, r) is not one-to-one; in general 
infinitely many p(z, r) correspond to a schlicht function ƒ. 

To any ƒ which has real coefficients, there is a corresponding p(z, r) 
which has real coefficients. Now if Cu £2, £3, • • • belong to a function 
with positive real part, so do the numbers 

Re £1, Re c2, Re cz, • • • 

(this follows from the convexity of the family of functions p). Thus 
if in (3.29) we replace the c„(r) by their real parts, the resulting an 

belongs to a schlicht function with real coefficients. From this re
mark, it follows at once that |a2 | r§2, \az\ g 3 , for complex coeffi
cients. For example, to show that |a3 | ^ 3 , we may suppose without 
loss of generality that a 3 > 0 . For, given any schlicht function ƒ, we 
have only to consider the function 

e~i9f(ei9z) = z + a2e
i$z2 + aze™zz + • • • 

which, for suitable choice of 0, will have a real non-negative third co-
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efficient. But if az is real we have from (3.27) (with T = oo) 

a3 = - 2 J e~2r Re C2(T)<2T + 4 ( f e~*r Re Ci(r)dr J 

- 4 M 0~rIm£i(T)dr j 

g - 2 f <r2' Re *2(T)<*T + 4 f f <r' Re <?I(T)<*T ) . 

The expression on the right of this inequality is the third coefficient 
of some function with all coefficients real, and therefore as we have 
seen bounded by 3. This argument fails for a^. 

When the cv(r) (*> = 1, 2, • • • ) are independent of r, the coefficients 
given by (3.26)-(3.29) belong to the function 

where S(z)/(zS'(z))=p(z) = \+Y£-ic*w- In particular, for T = oo, 
ƒ(z) =S(z) and the formulas reduce to (3.8). 

Finally, let (ai(/), a3(/), • • • , an(t))> O^t^T, be a curve lying 
on the boundary of 5 n . Then it is obvious that the curve (ci(r), 
£2(T), • • • , Cn-i(r)), of which (a2(/), a3(/), • " ' i a*(t)) is the trans
form, must lie on the boundary of P n , at least for almost all r . 
On the other hand, if (a2(0), <z3(0), • • • , an(0)) is a boundary 
point of Sn and if (ci(r), £2(r), • • * , cn-\(r)) lies on the boundary of Pn 

for every T, it does not necessarily follow that (a2(/), a3(/)> ' ' * > a*(t)) 
is on the boundary of Sn for 0 < / $> T. The curve (a2(/), az(t), • • •, a»00) 
lies on the boundary only if (ci(r), c2(r), • • • , cn_i(r)) is a curve of 
special form. 

For example, in the case » = 3, the region S$ is bounded by two 
hypersurfaces Hi and U2 plus their intersection, where Hi and iJ2 are 
the hypersurfaces generated by rotating the surfaces (2.6) and (2.7) 
respectively. Let (a2(0), a3(0)), the initial point of the curve, be an 
interior point of i?2. Then 

(3.30) 

faf(J) = a2(0) - 2 f feW&r, 

%(/) = ai(0) - 02(O)2 + e2<02(*)2 - 2 f e2^2i*^>Jr 
J o 

is a curve lying on ü 2 , only if e*'*(r) satisfies the equation 
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(3.31) lm [Aoer'e*™ + B0e
2i*^} = 0, 

where A0 and 23 o are numbers which can be given explicitly in terms 
of the point (a2(0), a3(0)). As / tends to infinity, (a2(t), a3(/)) tends to 
(277, 3y2) f ° r some 77, \rj\ = 1, a point on the intersection of Hi and H2 

belonging to the function ƒ(z) =2 / (1 — rjz)2. No interior point of H2 

can be connected to a point on the intersection of Hi and H2 by a 
curve corresponding to a finite range of the parameter /. 

Next, set 

(3.32) 

and take 

eta2(t) = — 2 — 2 J eTCi(r)dr} 
J o 

e2<a3(/) = - 1 + e2ta2(t)
2 - 2 e2^2(r)^r « 2 ~ 2 f \ 

•/ o 

(3.33) Cl(r) = { 
I cos «(T 

ia(T), 0 ^ T ^ o , 

(r) + iC, to < T < oo, 

re2*a (T\ 0 ^ r ^ /o, 
(3.34) C,(T) = < 

(cos 2a(r) + 2iC cos a(r), /o < r < oo, 
where cos a(r) = e~T, 0 ^ a ( r ) <7r/2, C is a constant, O ^ C ^ l , and /0 

is uniquely defined by sin a(t0)—a(t0) cos a(/0) = C The function 
ƒ>(#, r) corresponding to this curve is 

(3.35) # ( * . T ) = 

1 + e ia(r)2 1 + 2i sin <X(T)S — s2 

1 — eia(T)2 1 — 2 cos a(r)s + 22 

1 + 2iCz - z2 

1 — 2 cos a(r)z + 22 to < T < oo. 

For / = 0, (a2(0), a3(0)) = ( —2, 3); this point belongs to the function 
f(z) =z/(\+z)2. As t increases from 0 to t0, the point (a2(f), az(t)) 
moves on the intersection of Hi and H2; as / increases from /0 to oo, 
(#2(2) > 0s(O) moves on Hi and as J tends to infinity approaches the 
point ( — 2iCt 1-4C2) belonging to ƒ(*) = z/(l+2iCz-z2). Any point 
on Hi, or on the intersection of Hi and H2, is representable in one of the 
two forms (a2(t)e

ie, a3(/)e2iö), (â2(/)e~^, âz(t)e~2id), for suitable choice 
of 0, C and /, O g / é : 00. That is, any point on Hi, or any point on the 
intersection of Hi and H2, may be obtained from (3.32) by a rotation, 
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or by a reflection on the axis-plane Im a2 = Im a3 = 0, or by both. 
We observe that the points ( - 2 Î C , 1-4C 2) , O ^ C ^ l , which lie on 

the boundary of Sn*, correspond to t = «>. Rotating through the angles 
±7r/2, these points become (2C, 4C2—1), — l ^ C ^ l , and they lie on 
the parabola a3=ö^ — l, — 2 g a 2 g 2 . This parabola plus its rotations 
is the intersection of the boundary of S% with 53*. The parabola is 
obtained from (3.32) by taking Ci(r) = — 1 , C2(T) = 1. AS t tends to 
infinity, (a2(t), dz(t)) approaches the point (2,3) belonging tp f(z) 
= z/(l — z)2, a rotation of the function z/(l +z)2 corresponding to / = 0. 
Hence every point of Hi can be connected to this function, or to a 
rotation of it, by a curve corresponding to a finite range of the pa
rameter. This is a consequence of the fact that for functions w =ƒ be
long to H\, the portion of the boundary in the w-plane near w = oo 
is a straight line arg (w) = constant (see §2). 

The form of these curves lying on the boundary of Sz has been cal
culated from the formulas (2.6) and (2.7). A derivation based on 
Löwner's method alone would be interesting. 

4. Maps of the coefficient regions Sn. Let 

(4.1) Un- T(Sn) 

be a continuous mapping of S n on a region Î7n. When Un has the same 
dimensionality as Sn, a common type of map has the special form in 
which, if (62, bzf • • • , bn) is the image of the point (a2l a3, • • • , an) 
of S», then 

(4.2) bv = bv(a2, a3, • • • , ap); 

tha t is, bv depends only on the coefficients a2, dz, • • • , av. 
This type of map frequently arises when we consider the coeffi

cients of the powers of z of some functional F of/, 

(4.3) « = *(ƒ), 

where g depends on z in an analytic way. Thus we may take 

(4.4) g = (ƒ(*))* = zk-Kz + b2z
2 + bzz

z + • • • ) . 

In the case &= — 1, 

2 s 
( 4 . 5 ) 6 2 = " " #2, ^3 = #2 "~" #3, ^4 = 2#203 —' #2 ~~ #4» ' * * 

or, generally, 
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h+t = E ( -1 ) 
fci+*aH +kv 

(kl + k2 + * ' • + kv) ! ft! fc, 
- «2 * • • 0,1+1. 

&i!&2l * • • kpl 

We also obtain a mapping (4.2) if we set 

(4.6) g = ^ = z + b2z> + hz* + • • • 
ƒ (*) 

which gives 

2 3 

(4.7) b2 = — a2, &3 = 2(a2 — 03), ô4 = 7a2a3 — 4a2 — 3a4, 

Another important case of (4.2) is defined by 

(4.8) ƒ*(*) - {ƒ(**) }1/fc = * + 622
fc+1 + hz2k+1 + • • • , 

£ being a positive integer. Here 
1 / * - 1 A 

k \ 2k / 

, 1 / * - l t (* — 1)(2A - 1) A 
OA = — I 04 — 0203 H 77; a* )» 

4 \ k 6kr / 

02 

(4.9) k 

The function ƒ * is schlicht (conversely if a function ƒ & of the form 
(4.8) is schlicht, so is the function {fk(z1/k)}k) and hence (4.9) is a 
mapping of Sn on a subset of itself. Finally let 

(4.10) z = f-^w) = w + b2w
2 + Ô3W3 + • • • 

where 

2 3 
( 4 . 1 1 ) b2 = — 02, &3 = 202 — 03, &4 = 50203 ~ 502 ~ 04, * * # . 

The maps defined by (4.5), (4.7), (4.9) and (4.11) have been studied 
by various authors, mainly from the point of view of obtaining pre
cise upper bounds for the coefficients bp. In the case (4.5), precise 
bounds are known only for i> = 2, 3 and 4, namely, |&2| ^ 2 , |&3| g l , 
\h\ ^ 2 / 3 (see [12(a)] and [3(c)]). In this case the conjecture has 
been suggested that |ôw | ^2 / (w —1). 

In the case (4.7), it is obvious that |ô„| ^ 2 (*> = 2, 3, • • • ) when ƒ 
maps \z\ < 1 on a star-like domain. However, there are points 
(a2, 03, 04) of S4 outside S4* for which \fa\ > 2 (see [11(b)]) and this in 
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fact occurs even for points (a2, 03, #4) belonging to schlicht functions 
with all coefficients real. The region Bn of points (£2, bZl • • • , bn) de
fined by (4.7) was studied by Peschl [8] in preference to Sn itself, 
for the reason tha t Bn has a slightly simpler relationship to Pn than 
Sn has. 

In (4.9) precise bounds of bv are known only for v = 2, 3. I t is clear 
that |&2| é-2/k, and the precise inequality for 63 is (see [2]) 

, , 2 ( 2 ( 4 - 1 ) ) 1 

The precise upper bounds for the bv defined by (4.11) were obtained 
by Löwner [7] using his method of parametric representation (these 
bounds may also be obtained in a different way (see [11(b)])). The 
inequalities are: 

. , 1-3-5 • • • ( 2 ? - 1) 

Equality is attained for any v only iff(z) = z/(l—rjz)2
f \rj\ = 1 . 

Of particular importance is the case in which the mapping (4.2) is 
linear in a2, #3, • • • , #*, that is when 

(4.12) by = ei + e202 + * • • + evap. 

A linear mapping of this type arises whenever we consider the coeffi
cients of the powers of J* in the expansion 

(4.13) g(f) = /(0(f)) = ôxf + h?* + ht* + • • • 

where 

(4.14) z » 0(f) = H + ftf2 + tof3 + • • • 

is regular in a neighborhood of f = 0. Writing 

we see that 

(4.15) 6, « jSi" + jsjf)a, + 0 % , + • • • + 0 % , (* « 1, 2, • • • ) 

where /#>=/?,,/3<*>== ft. 
Suppose first tha t j3i = 1 in (4.14) and let s=<£(£) m ^ p some domain 
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G on \z\ < 1 . 4 Then the variability region of (62, £3, • • • , bn) is the 
nth coefficient region Sn(G) of functions regular and schlicht in G. 

Roughly speaking, the coefficient problem is easier the larger G is.5 

For example, let X be a small number, 0 < X < 1 , and let G = G(X) be 
the exterior of the circle orthogonal to the real axis and cutting it 
a t X(l +X)""1 and X(l — X)""*1. Then if X =Xn is small enough, the precise 
upper bound for bn can be determined (see [11(b)]). However, these 
regions depend on n. 

In particular, consider the class C of domains G which are gen
erated from the unit circle by the family of normalized schlicht func
tions ƒ. The interior of the unit circle itself belongs to C, and we de
note it by E. If S{G) is the family of functions (4.13) which are regu
lar and schlicht in G, we define 

«n = Otn(G) = SUp J bn I 
sO(G) 

and write 

yn = inf an(G), Tn = sup an(G). 
GQC G(ZC 

Then (see [11(a)]) 

a»(£) = Yn. 

But, given n, there are other domains G (depending on n) for which 
a n = 7n. Moreover, if an(E)=n (w = 2, 3, • • • ), we have r n = 4w~1 

(w = 2, 3, • • • ). Hence an(E) =n (w = 2, 3, • • • ) implies that the in
equality 

n â *n(G) ^ 4*-1 

is valid throughout C. 
Let us drop the restriction that j8i = l, and suppose instead that 

<£(f) is regular and bounded by 1 in |f| < 1 . The family of functions 
g(D given by (4.13) as ƒ and <f> vary is then the family of functions 
which are subordinate to schlicht functions, and the region of varia
bility of the point (62, fa> • • • , bn) contains Sw. Concerning precise 
bounds for the bvt it is known only that I&2I ^ 2 . However, if ƒ (in 

4 The domain may contain 00. We suppose that G is schlicht although a more gen
eral problem is obtained by allowing G to be a multiply-connected Riemann domain. 
It is also clear that we may formulate the coefficient problem for points of G other 
than the origin. 

6 If G is the whole plane minus a single point (in which case no function <£($*) exists), 
there is only one normalized function g(Ç) which is regular and schlicht in G; in this 
case the problem is completely trivial. 
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(4.13)) has real coefficients or maps \z\ < 1 on a star-like domain, 
then |ô„| ^v (v = 2, 3, • • • ) (see [6(b)], where an excellent exposition 
of this family is given). 

5. Variability regions in general. Let 7 be a closed set in \z\ < 1 , 
and let 

F = *(/(*),M, ƒ M,755". • • •./(n)«,7^00 17) 
be a functional depending on the values taken by ƒ (0), ƒ'(2), • • -,/ ( n )(^) 
in 7. The value of F is a number which may be complex, and we sup
pose that F is defined and continuous whenever ƒ belongs to the 
family 5 of schlicht functions. Moreover, writing ƒ (n ) (2) =xM+fyM, let 
F be "differentiable" (for example, in the sense of Volterra) with re
spect to xM and y^ (JU = 0, 1, • • • , n) when the functions are regarded 
as independent and only one of them is given an increment. However, 
we do not need to be precise since we shall be concerned here only 
with specific and rather trivial examples of functional F. Now let 
Z7= (Z7i, C/2, • • - , Um) be the point in euclidean space defined by m 
functionals of this type: 

(5.1) U„ = Fk(f(z), W), • • • , ƒ <»> (s), 755® I 7*) • 

The region of variability F of U is the closed set of points U as ƒ 
ranges over the family S of schlicht functions. 

Thus, the nth region Sn of the coefficients is obtained by taking 
Uk=fW(0)/kl (k = 2, 3, • • • , n). On the other hand the region of 
variability of the point 

V/w ƒ» / o ) 
for fixed 2, 0 ^ | z\ < 1, is a linear map of Sn of the type (4.12). For let 

\ 1 + *£/ „=i \ 1 + zXf v=o 

where oj0 = g(0) =ƒ(*)> a i -g ' (O) = ƒ (s)(l - | s |2) . Then the function 

g(D - <*o _ A ocp 

is a normalized schlicht function, and so the point (#2/0:1, 0:3/0:1, • • • , 
an/cti) belongs to Sn . We have 

/a) = i (r—^) - £<* ( f - i ï ' -̂ )(z) - è «»*(*. ". 2) 
\ 1 - sf/ _o \ 1 — zf/ *-i 
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where K(k, v, z) depends only on k} v and z\ hence 

——- - (1 - | z |2) 2_, — K(k, v, z) 
f (*) *-i « i 

(" - 2, 3, • • • ). 

(5.3) 

If U=f(z), z fixed, the region of variability is defined by 

ƒ(*) i i 
l o g ' — + l o g ( l - | * | » ) ^ l o g 

1 - M 
(see [4, 3(d)}), where log (f(z)/z) is the branch which vanishes for 
2 = 0. Taking U=f(z) /ƒ'\z) , the corresponding region V is given by 

i + l*l 
(5.4) l°g V *ƒ'(*) J 

log 
1 - 2 

(see [5, 3(b)]), where log (f(z)/zf'(z)) is the branch vanishing for 2 = 0. 
From (5.3) and (5.4) we obtain at once the two classical inequalities 

(5.5) 

(5.6) 

(i + l*l)2 

i - l * l 

£|/(*)l s 

S I f'{z) I g 

( i - M ) 2 

i + l*l 
(\ + \z\y~'J (1-1*1)» 

If we choose C/ = arg/ / (s) (argjf'(O) =0) then 

f 4 arcsin | z | , 

(5.7) | arg ƒ'(*) | ^ -, 
7T + lOg -

I «I = 1/21/2, 

1 / 2 1 / 2 < | ^ | < 1. 

I t is worth noting that although (5.6) was the starting point of these 
investigations, (5.7) was not proved until twenty years later when 
Golusin [3(a)] established it by using Löwner's method. Inequalities 
(5.6) and (5.7) constitute what are called the distortion and rotation 
theorems. 

An interesting problem arises if we set U= ( | ƒ | , | ƒ ' | ). This problem 
has been solved by Robinson [9]. 

We may also take U=(f(z), ƒ ( - * ) ) , or */=(ƒ'(*), ƒ ' (-*))» where z 
is a fixed point of \z\ < 1 . Aspects of this problem have recently been 
studied by Golusin (see, for example, [3(e), (f), (g)]). 

Another type of problem is obtained by setting 

(5.8) U - f | f(re«>) \H6, X > 0, 0 < r < 1. 



I947J SOME PROBLEMS IN CONFORMAL MAPPING 437 

In this case the precise upper bound is unknown. Or take 

(5.9) U = f ' ÇV | f(pe*) \2pdpdd = * 2 > | an\*r*\ 
J o •/ — T n«=l 

Here Z7 is the area of the map of \z\ <r by ƒ. I t is obvious that this 
area is not less than wr2 (with equality only if ƒ=2) , but the precise 
upper bound is not known. 

A rough classification of the above types of problems is provided 
by the order n of the highest derivative involved. The existing litera
ture (apart from papers on the coefficient problem) is mainly con
cerned with problems involving first and second derivatives only. 

6. Generalizations. Two natural generalizations are obtained by: 
(i) relaxing the restrictions that the domain Gz of the variable z is 
schlicht and simply-connected; (ii) relaxing the restriction that the 
domain Gw of values w = ƒ(2) is schlicht. Both have been considered. 
We shall comment briefly on these two generalizations, and we dis
cuss (i) first. 

For simplicity, let us suppose that Gz is schlicht but possibly multi
ply-connected. We may then consider extremal properties of the fam
ily of functions f(z) which are regular, single-valued and schlicht in 
Gg and which are properly normalized at some interior point ZQ of the 
region. Problems of this type have been investigated in numerous 
papers of H. Grötzsch.6 The method used by Grötzsch was simplified 
and improved by H. Grunsky [5], and was later simplified further 
by G. Golusin ([3(b)]) who applied it to a series of problems in the 
schlicht conformai mapping of multiply-connected regions. In some 
instances these investigations have led to new and more complete 
results fof simply-connected regions. 

The method used is one of comparison with functions which map 
Gz onto the w-plane slit along finite arcs of logorithmic spirals which 
are obtained from the equation Im (e~ie log w) =c by holding 0 fixed 
and varying c. Similar comparisons can be made with functions which 
map Gz on the plane minus parallel straight-line slits. 

More recently, problems of this type have been successfully at
tacked by variational methods in which the comparison functions are 
€-variations of the extremals (see [12(b)]). 

A generalization of type (ii) is obtained by considering the family 
of £-valent functions ƒ which are regular in | z \ < 1 and normalized 
in some way at 2 = 0 and which take no value in \z\ < 1 more than p 

• See Berichte der Akademie der Wissenschaften, Leipzig, 1928-1932. 
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times, where p is some fixed positive integer. Although these functions 
have been intensively studied, few precise bounds for the family are 
known when p > 1 ; most results obtained so far are statements about 
order of magnitude only. 

The concept of p-valency may be generalized to fractional values 
of p as follows. Let w—f(z) be regular in \z\ < 1 , and let A(R) denote 
the area (regions covered multiply being counted multiply) of that 
portion of the map of the unit circle by w =f(z) which lies in the circle 
\w\ gJR. If 

A(R) S pirR2 

for all R>0, where p is a positive (though not necessarily integral) 
number, we say that ƒ is mean £-valent. With suitable normalization 
at z = 0, the family of mean £-valent functions (p fixed) is compact, 
and it can be shown that 

(6.1) l/OO | £A{l-\z\)-*> ( i>>0) , 

(6.2) \an\ gBn**-1 (p> 1/4), 

where A and B are constants. (Here an is the coefficient of zn in the 
expansion about 2 = 0.) 

The most interesting class of mean £-valent functions is the class 
of mean 1-valent functions ƒ of the form 

f(z) = z + a2z
2 + a3z

z + • • • . 

For this family \a2\ —2 with equality only if ƒ = 2/(1— rjz)2, \rj\ = 1 , 
but there are mean 1-valent f unctions ƒ f or which | a*\ >SJ However, 
these functions resemble schlicht functions so far as orders of magni
tude are concerned. 
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