A NOTE ON THE MINIMUM MODULUS OF A CLASS OF INTEGRAL FUNCTIONS

S. M. SHAH

A well known theorem due to Littlewood, Wiman, and Valiron ${ }^{1}$ states that for any integral function of order less than one-half,

$$
\log m(r)>(\text { a positive constant) } \log M(r)
$$

on a sequence of circles of indefinitely increasing radius. I consider in this note a class of integral functions which have this property and prove the following theorem.

Theorem 1. Hypothesis:
(1) $\left(R_{n}\right)$ is any sequence of positive numbers such that $R_{1}>1$, $R_{n} / R_{n-1} \geqq \lambda>1$.
(2) $\left(p_{n}\right)$ is any sequence of positive integers.
(3) $a_{11}, a_{12}, \cdots, a_{1 p_{1}}, a_{21}, \cdots, a_{2 p_{2}}, \cdots$ are a set of points such that $0<\left|a_{11}\right| \leqq\left|a_{12}\right| \leqq \cdots$ and such that a finite number $a_{n 1}, \cdots, a_{n} p_{n}$ lie inside the ring $\left(R_{n}-R_{n}^{\alpha}<|z|<R_{n}\right)$ where $0<\alpha<1$.
(4) μ_{n} is a sequence of positive integers such that $\sum_{1}^{\infty} p_{n} / \beta^{\mu_{n}}$ is convergent, β being any constant greater than one.
(5) The exponent of convergence of the points

$$
a_{n r} \exp \left(2 \pi i \nu / \mu_{n}\right),
$$

where $r=1,2, \cdots, p_{n} ; \nu=0,1,2, \cdots, \mu_{n}-1 ; n=1,2,3, \cdots$, is ρ $(0 \leqq \rho<\infty)$.
(6) ${ }^{2}$ Lower bound $\left\{\mu_{n}\right\} \geqq 1+\rho$.

Conclusion:
(7) The canonical product

$$
\begin{equation*}
f(z)=\prod_{n=1}^{\infty} \prod_{s=1}^{p_{n}}\left\{1-\frac{z^{\mu_{n}}}{a_{n s}^{\mu_{n}}}\right\} \tag{8}
\end{equation*}
$$

formed with these points as zeros is of order ρ; and the values of $r=|z|$ for which the inequality

$$
m(r, f)>C M(r, f)
$$

Received by the editors February 4, 1946, and, in revised form, November 29, 1946.
${ }^{1}$ G. Valiron, Lectures on the general theory of integral functions, pp. 128-130.
${ }^{2}$ It is possible to choose R_{n}, p_{n}, and so on, satisfying the conditions (1) to (6). Example: $R_{n}=2^{2 n} ; p_{n}=n^{22^{n}} ; \mu_{n}=2^{n}$. Here $\rho=1$.
where $C=C(\lambda, \epsilon)>0$, is satisfied form a set of upper density greater than $1-1 / \lambda-\epsilon$.

Theorem 2. If (1), (2), (3), (4), (5), and (6) hold and if $\rho>0$ and if further ${ }^{2}$

$$
\begin{equation*}
\sum_{n=1}^{N} \mu_{n} p_{n} / R_{N}^{p} \rightarrow \infty \quad \text { with } N \rightarrow \infty \tag{9}
\end{equation*}
$$

then

$$
\underset{r \rightarrow \infty}{\lim \sup } \log m(r, f) / r^{\rho}=\infty
$$

where f is the canonical product (8); and the values of r for which $\log m(r, f)>\Delta r^{\rho}$ where Δ is any arbitrarily large constant form a set of upper density greater than $1-1 / \lambda-\epsilon$.

Theorem 3. Hypothesis: Let $\rho>0$ be nonintegral and (1), (2), (3), (4), and (5) hold. ${ }^{3}$

Conclusion:
(10) Any integral function of order ρ with exactly these zeros will be of the form

$$
\begin{equation*}
F(z)=e^{\rho(z)} P(z) \prod_{n=n_{1}}^{\infty} \prod_{s=1}^{p_{n}}\left\{1-\frac{z^{\mu_{n}}}{a_{n s}^{\mu_{n}}}\right\} \tag{11}
\end{equation*}
$$

where $g(z)$ is a polynomial of degree not exceeding $\rho, P(z)$ a polynomial; ${ }^{4}$ and the values of r for which

$$
\log m(r, F)>(1-\epsilon) \log M(r, F)
$$

holds will form a set of upper density greater than $1-1 / \lambda-\epsilon$.
Theorem 4. If $\rho>0$ and (1), (2), (3), (4), (5), and (9) hold ${ }^{5}$ then conclusion (10) holds.

Theorem 5. If (1), (2), (3), (4), (5), and (6) hold and if $m_{\sigma}(r)$ and $M_{\sigma}(r)$ denote the lower and upper bounds of $|f(z)|$, where $f(z)$ is the canonical product (8), of order $\rho(0 \leqq \rho<\infty)$ in the annulus $r \leqq|z|$ $\leqq r+r^{\sigma}(\sigma<1-\rho)$ then the values of r for which ${ }^{6}$

[^0]$$
m_{\sigma}(r)>C_{1} M_{\sigma}(r)
$$
where $C_{1}=C_{1}(\lambda, \epsilon)>0$, holds form a set of upper density greater than $1-1 / \lambda-\epsilon$.

Proof of Theorem 1. Let $|z|=R=\lambda^{\gamma} R_{k}(0<\gamma<1)$, where k is so large that

$$
\lambda^{\gamma} R_{k}<R_{k+1}-R_{+1}^{\alpha},
$$

$f(z)=P_{1} P_{2}$, where

$$
\begin{aligned}
P_{1} & =\prod_{n=1}^{k} \prod_{s=1}^{p_{n}}\left\{1-\frac{z^{\mu_{n}}}{a_{n s}^{\mu_{n}}}\right\}, \\
P_{2} & =\prod_{n=k+1}^{\infty} \prod_{s=1}^{p_{n}}\left\{1-\frac{z^{\mu_{n}}}{a_{n s}^{\mu_{n}}}\right\}, \\
\left|P_{1}\right| & \leqq \prod_{n=1}^{k} \prod_{s=1}^{p_{n}}\left\{1+\frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}}\right\} \\
& =\left(\prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}}\right)\left(\prod_{n=1}^{k} \prod_{s=1}^{p_{n}}\left\{1+\frac{\left|a_{n s}\right|^{\mu_{n}}}{R^{u_{n}}}\right\}\right) \\
& =P_{11} P_{12},
\end{aligned}
$$

say. Now $\left|a_{n s}\right|<R_{n}$,

$$
\left|P_{12}\right| \leqq \prod_{1}^{k}\left\{1+\left(\frac{R_{n}}{R}\right)^{\mu_{n}}\right\}^{p_{n}}
$$

and $R_{n} / R \leqq 1 / \lambda^{r}<1$ for $n=1,2, \cdots, k$, and $\sum p_{n} / \lambda^{\gamma \mu_{n}}$ is convergent. Hence

$$
\begin{aligned}
& \left|P_{12}\right| \leqq C_{2} \\
& \left|P_{2}\right| \leqq \prod_{n=k+1}^{\infty} \prod_{s=1}^{p_{n}}\left\{1+\frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}}\right\},
\end{aligned}
$$

where $\left|a_{n s}\right| \geqq\left|a_{k+1, s}\right| \geqq R_{k+1}-R_{k+1}^{\alpha}$,

$$
\frac{R}{\left|a_{n s}\right|} \leqq \frac{R}{R_{k+1}-R_{k+1}^{\alpha}} \sim \frac{\lambda^{\gamma} R_{k}}{R_{k+1}} \leqq \frac{1}{\lambda^{1-\gamma}},
$$

and $\sum p_{n} / \lambda^{(1-\gamma) \mu_{n}}$ is convergent. Hence

$$
\left|P_{2}\right| \leqq C_{3}
$$

[^1]and so
$$
M(R) \leqq C_{2} C_{3} \prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}}
$$

Further

$$
\begin{aligned}
\left|P_{1}\right| & =\prod_{n=1}^{k} \prod_{s=1}^{p_{n}}\left|1-\frac{z^{\mu_{n}}}{a_{n s}^{\mu_{n}}}\right| \\
& \geqq \prod_{n=1}^{k} \prod_{s=1}^{p_{n}}\left\{\frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}}-1\right\} \\
& \geqq\left(\prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}}\right)\left(\prod_{n=1}^{k} \prod_{s=1}^{p_{n}}\left\{1-\frac{\left|a_{n s}\right|^{\mu_{n}}}{R^{\mu_{n}}}\right\}\right) \\
& =P_{11} P_{14}
\end{aligned}
$$

say. Since $\sum p_{n} / \lambda^{\gamma \mu_{n}}$ is convergent and

$$
\begin{align*}
& \left|P_{2}\right| \geqq \prod_{n=k+1}^{\infty} \prod_{s=1}^{p_{n}}\left\{1-\frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}}\right\} \geqq C_{5} \\
& m(R) \geqq C_{4} C_{5} \prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}} \cdots \tag{12}
\end{align*}
$$

which gives that $m(R) \geqq C_{6} M(R)$ where $C_{6}=C_{6}(\lambda, \gamma)$. Now given $\epsilon>0$ let $\epsilon_{1}=\epsilon \lambda^{2} /(\lambda+1+\epsilon \lambda)$. Writing $\lambda^{\gamma}=\theta$ and $R=\theta R_{k}$, where $1+\epsilon_{1} \leqq \theta$ $\leqq \lambda-\epsilon_{1}$ and $k \geqq K, K$ being so large that $R_{K}\left(\lambda-\epsilon_{1}\right)<R_{K+1}-R_{K+1}^{\alpha}$, we get $m(R) \geqq C(\lambda, \epsilon) M(R)$. This inequality holds good over a set of upper density greater than

$$
\frac{\left(\lambda-\epsilon_{1}\right)-\left(1+\epsilon_{1}\right)}{\lambda-\epsilon_{1}}=1-\frac{1}{\lambda}-\epsilon .
$$

Proof of Theorem 2. We know from (12) that $m(R, f) \geqq C_{4} C_{5} X$, where

$$
\begin{aligned}
X & =\prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}} \geqq \lambda\left(\gamma \Sigma_{1}^{\left.k_{n} p_{n}\right)}\right. \\
\log m(R, f) & \geqq \log \left(C_{4} C_{5}\right)+\log X \geqq \log \left(C_{4} C_{5}\right)+\gamma \log \lambda\left(\sum_{1}^{k} \mu_{n} p_{n}\right) \\
& >\Delta R^{\rho} \quad \text { for all large } R .
\end{aligned}
$$

Hence $\lim \sup _{r \rightarrow \infty} \log m(r, f) / r^{\rho}=\infty$. Further, the values of r for which $\log m(r, f)>\Delta r^{\rho}$ form a set of upper density greater than $1-1 / \lambda-\epsilon$.

Proof of Theorem 3. Given $\epsilon>0$, let $\epsilon_{2}=\epsilon /(2-\epsilon)$. Since

$$
\sum \mu_{n} p_{n} /\left(R_{n}-R_{n}^{\alpha}\right)^{\rho-\epsilon_{8}}
$$

is divergent we have

$$
\mu_{n} p_{n} \geqq R_{n}^{\rho-\epsilon_{4}} \quad \text { or } n=k_{1}, k_{2}
$$

Let $|z|=R=\lambda^{\gamma} R_{k}\left(0<\gamma<1\right.$ and $\left.1+\epsilon_{1} \leqq \lambda^{\gamma} \leqq \lambda-\epsilon_{1}\right)$, where k takes the values k_{1}, k_{2}, \cdots If $X=\prod_{n=n_{n}}^{k} \prod_{s=1}^{p_{n}} R^{\mu_{n}} /\left|a_{n s}\right| \mu_{n}$ then $X \geqq \exp \left\{\gamma \log \lambda \sum_{n_{1}}^{k} \mu_{n} p_{n}\right\}$ and so $\log X \geqq C_{6} \sum_{n_{1}}^{k} \mu_{n} p_{n} \geqq C_{6} R_{k}^{\rho-\epsilon_{4}}=C_{7} R^{\rho-\epsilon_{4}}$. Choosing k and hence R sufficiently large we have, as in Theorem 1,

$$
\begin{aligned}
m(R, F) & >C_{8} \exp \left\{\log X-C_{9} R^{[\rho]}\right\} \\
\log m(R, F) & >\log C_{8}+\log X-C_{9} R^{[\rho]} \\
& >\left(1-\epsilon_{2}\right) \log X
\end{aligned}
$$

Similarly $\log M(R, F)<\left(1+\epsilon_{2}\right) \log X$ which gives

$$
\frac{\log m(R, F)}{\log M(R, F)}>\frac{1-\epsilon_{2}}{1+\epsilon_{2}}=1-\epsilon
$$

As in Theorem 1, this result holds for values of R forming a set of upper density greater than $1-1 / \lambda-\epsilon$.

Theorem 4 can be similarly proved.
Proof of Theorem 5. We know that for $|z|=R=\lambda^{\gamma} R_{k}(0<\gamma<1$, $\left.1+\epsilon_{1} \leqq \lambda^{\gamma} \leqq \lambda-\epsilon_{1}\right)$

$$
m(R, f) \geqq C_{4} C_{5} \prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{\left|a_{n s}\right|^{\mu_{n}}}
$$

We can choose k so large that $R^{\prime}=R+R^{\sigma}<\lambda^{\gamma+\epsilon_{5}} R_{k}$, where $\gamma+e_{5}<1$,

$$
R^{\prime}<R_{k+1}-R_{k+1}^{\alpha}
$$

Now

$$
M\left(R^{\prime}, f\right)<C_{10} \prod_{n=1}^{k} \prod_{\mathrm{s}=1}^{p_{n}} \frac{R^{\prime \mu_{n}}}{\left|a_{n \mathrm{~s}}\right|^{\mu_{n}}}
$$

and therefore

$$
\frac{m(R, f)}{M\left(R^{\prime}, f\right)}>\frac{C_{4} C_{5}}{C_{10}}\left(\frac{R}{R^{\prime}}\right)^{\Sigma_{n-1}^{k} \mu_{n} p_{n}}
$$

Now $Y=\left(R^{\prime} / R\right)^{-\Sigma_{1}^{k} \mu_{n} p_{n}}=\left(1+R^{\sigma-1}\right)^{-\Sigma_{1}^{k} \mu_{n} p_{n}}$. Further $\sum_{1}^{k} \mu_{n} p_{n}$ $<\left(C_{11} \log R\right) R^{\rho+\iota \epsilon}<R^{\rho+e \gamma}$ for all large R. Hence $Y>\exp \left\{-R^{\rho+\epsilon 7}\right.$
$\left.\log \left(1+R^{\sigma-1}\right)\right\}$ and $R^{\rho+\epsilon 7} \log \left(1+R^{\sigma-1}\right) \sim R^{\rho+\epsilon 7+\sigma-1} \rightarrow 0$ as $R \rightarrow \infty$, since $\sigma<1-\rho$ and ϵ_{7} can be chosen so small that $\sigma<1-\rho-\epsilon_{7}$. Hence $Y>1 / 2$ for all large R and so

$$
\frac{m(R, f)}{M\left(R^{\prime}, f\right)}>\frac{C_{4} C_{5}}{2 C_{10}}
$$

Further

$$
\frac{m\left(R^{\prime}, f\right)}{M\left(R^{\prime}, f\right)}>C_{11}
$$

Hence

$$
\frac{m_{\sigma}(R)}{M_{\sigma}(R)}=\min \left\{\frac{m(R)}{M\left(R^{\prime}\right)}, \frac{m\left(R^{\prime}\right)}{M\left(R^{\prime}\right)}\right\} \geqq \min \left\{\frac{C_{4} C_{5}}{2 C_{10}}, C_{11}\right\} \geqq C_{1}
$$

The values of R for which this result holds form a set of upper density greater than $1-1 / \lambda-\epsilon$.

Added in proof. The positive numbers ϵ and ϵ_{4} are chosen so small that

$$
1 / \lambda+\epsilon<1 ; \quad[\rho]+\epsilon_{4}<\rho
$$

In the proof of Theorem 1 we showed that

$$
M(R) \leqq C_{2} C_{3} P_{11} ; \quad m(R) \geqq C_{4} C_{5} P_{11}
$$

both relations holding for all R such that

$$
\left(1+\epsilon_{1}\right) R_{k} \leqq R \leqq\left(\lambda-\epsilon_{1}\right) R_{k} \quad(k>K)
$$

Here

$$
\begin{aligned}
& C_{2}=\prod_{n=1}^{\infty}\left\{1+\left(\frac{1}{1+\epsilon_{1}}\right)^{\mu_{n}}\right\}^{p_{n}}, C_{4}=\prod_{n=1}^{\infty}\left\{1-\left(\frac{1}{1+\epsilon_{1}}\right)^{\mu_{n}}\right\}^{p_{n}}, \\
& C_{3}=\prod_{n=1}^{\infty}\left\{1+\left(1-\frac{\epsilon_{1}}{2 \lambda}\right)^{\mu_{n}}\right\}^{p_{n}}, C_{5}=\prod_{n=1}^{\infty}\left\{1-\left(1-\frac{\epsilon_{1}}{2 \lambda}\right)^{\mu_{n}}\right\}^{p_{n}} .
\end{aligned}
$$

If $C=C_{4} C_{5} / C_{2} C_{3}$ we have

$$
m(R) \geqq C M(R)
$$

the inequality holding over a set of upper density greater than $1-1 / \lambda-\epsilon$. If we further suppose that $\lambda=R_{n} / R_{n-1}(n=2,3, \cdots)$, then this inequality holds good over a set of upper density greater than $1-\lambda \epsilon(1+\epsilon) /(\lambda-1)$.

Muslim University

[^0]: ${ }^{8}$ For instance $R_{n}=2^{2 n}, p_{n}=n ; \mu_{n}=2^{7(n-1)}$. Here $\rho=7 / 2$.
 ${ }^{4} P(z)$ is a polynomial having zeros at points $a_{n r} \exp \left(2 \pi i v / \mu_{n}\right), r=1,2, \cdots, p_{n}$; $\nu=0,1,2, \cdots, \mu_{n}-1$ and $n=1,2, \cdots, n_{1}-1$ only.
 ${ }^{5}$ See footnotes 2 and 3.
 ${ }^{6}$ For a number of results on the flat regions of integral functions, see J. M. Whittaker, A property of integral functions of finite order, Quart. J. Math. Oxford Ser. vol. 2 (1931) pp. 252-258; B. J. Maitland, The flat regions of integral functions of finite order, ibid. vol. 15 (1944) pp. 84-96; and the references mentioned in the paper of Maitland.

[^1]: ${ }^{7} C, C_{1}, C_{2}, \cdots$ denote finite positive (nonzero) constants.

