CONCERNING AUTOMORPHISMS OF NON-ASSOCIATIVE ALGEBRAS

R. D. SCHAFER

In their studies of non-associative algebras A. A. Albert and N. Jacobson have made much use of the relationships which exist between an arbitrary non-associative algebra \mathfrak{N} and its associative transformation algebra $T(\mathfrak{H})$. In this paper we are interested in the automorphism group (\mathbb{F}) of \mathfrak{A}, and we sharpen the results of Jacobson $[3, \S 4]^{1}$ and Albert $[2, \S 9]$ in the sense that we prove © isomorphic to a well-defined subgroup of the automorphism group of each of three associative algebras ($\S \S 2,3$).

Incidental to our proofs is the reconstruction (in the sense of equivalence) of an arbitrary non-associative algebra \mathfrak{N} with unity element 1 from $T(\mathfrak{H})$ and from either of the enveloping algebras $E(R(\mathfrak{H}))$, $E(L(\mathfrak{C}))$ of respectively the right or left multiplications of \mathfrak{A}. This paper has been expanded in accordance with suggestions of the referee to include a more detailed study of the right ideals used in this reconstruction process (§5).

1. Preliminaries. Our notations are chiefly those of Albert as given in [1]. We regard a non-associative algebra \mathfrak{N} of order n over a field \mathfrak{F} as consisting of a linear space \mathfrak{R} of order n over \mathfrak{F}, a linear space $R(\mathfrak{H})$ of linear transformations R_{x} on \mathbb{R} of order $m \leqq n$ over \mathfrak{F}, and a linear mapping of \mathbb{R} on $R(\mathfrak{H})$,

$$
\begin{equation*}
x \rightarrow R_{x} . \tag{1}
\end{equation*}
$$

The elements R_{x} of $R(\mathfrak{H})$ are called right multiplications, and $R(\mathfrak{H})$ the right multiplication space of \mathfrak{N}. Multiplication in \mathfrak{H} is defined by

$$
\begin{equation*}
a \cdot x=a R_{x} \tag{2}
\end{equation*}
$$

The linearity of the right multiplications and of (1) insures distributivity in \mathfrak{A} as well as the usual laws of scalar multiplication. We shall use the fact that, in case \mathfrak{N} contains no absolute right divisor of zero (an element x such that $a \cdot x=0$ for all a in \mathfrak{H}), the mapping (1) is nonsingular and the order of $R(\mathfrak{H})$ over \mathfrak{F} is n.

The linear transformations L_{x} defined by

$$
\begin{equation*}
a \rightarrow x \cdot a=a L_{x} \tag{3}
\end{equation*}
$$

[^0]are called left multiplications of \mathfrak{A} and form the left multiplication space $L(\mathfrak{U})$ of \mathfrak{A}. The algebra \mathfrak{N} may equally well be regarded as consisting of $\mathfrak{R}, L(\mathfrak{U})$, and the linear mapping
\[

$$
\begin{equation*}
x \rightarrow L_{x} \tag{4}
\end{equation*}
$$

\]

of \mathbb{R} on $L(\mathfrak{H})$. Both $R(\mathfrak{H})$ and $L(\mathfrak{H})$ are linear subspaces of the total matric algebra $(\mathfrak{F})_{n}$ of all linear transformations on R.

If \mathfrak{M} is a subset of $(\mathfrak{F})_{n}$, the algebra of all polynomials in the transformations in \mathfrak{M} with coefficients in \mathfrak{F} is called the enveloping algebra of \mathfrak{M}, and is denoted by $E(\mathfrak{M})$. We are particularly concerned with the enveloping algebras $E(R(\mathfrak{H})$) and $E(L(\mathfrak{H})$) of respectively the right and left multiplications of \mathfrak{A}, and with the transformation algebra $T(\mathfrak{H})=E(I, R(\mathfrak{H}), L(\mathfrak{H}))$ which is the algebra of all polynomials with coefficients in \mathfrak{F} in the right and left multiplications of \mathfrak{A} and the identity transformation I in $(\mathfrak{F})_{n}$. We shall have occasion to write an arbitrary element T of each of these algebras as follows:

$$
\begin{array}{lr}
T=f\left(R_{x}, R_{y}, \cdots\right) & \text { for } T \text { in } E(R(\mathfrak{H})), \\
T=f\left(L_{x}, L_{y}, \cdots\right) & \text { for } T \text { in } E(L(\mathfrak{H})), \\
T=f\left(I, R_{x}, L_{x}, R_{y}, \cdots\right) & \text { for } T \text { in } T(\mathfrak{H}), \tag{7}
\end{array}
$$

where x, y, \cdots are elements of \mathfrak{A}. In case \mathfrak{H} contains a unity element 1 , then $R(\mathfrak{H})$ contains I, and we may write

$$
\begin{equation*}
T=f\left(R_{x}, L_{x}, R_{y}, \cdots\right) \quad \text { for } T \text { in } T(\mathfrak{H}) \tag{8}
\end{equation*}
$$

x, y, \cdots in \mathfrak{N}.
If \mathfrak{B} is a linear subspace of \mathfrak{A}, the set of all R_{b} for b in \mathfrak{B} is a linear subspace $R(\mathfrak{B}, \mathfrak{H})$ of $R(\mathfrak{H})$, and the set of all L_{b} is a linear subspace $L(\mathfrak{B}, \mathfrak{U})$ of $L(\mathfrak{H})$.

An automorphism S of an algebra \mathfrak{N} is a nonsingular linear transformation $x \rightarrow x S$ of \mathfrak{A} on itself such that

$$
\begin{equation*}
(a \cdot x) S=a S \cdot x S \tag{9}
\end{equation*}
$$

for all a, x in \mathfrak{A}. In terms of right and left multiplications, (9) may be written equivalently as

$$
\begin{equation*}
R_{x} S=S R_{x S} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{x} S=S L_{x S} \tag{11}
\end{equation*}
$$

for all x in \mathfrak{N}. We shall use the facts that, if S is an automorphism of $\mathfrak{\Re}$, then S^{-1} is also, and if \mathfrak{A} has a unity element 1 , then $1 S=1$.

Inasmuch as the elements T of subalgebras of $(\mathfrak{F})_{n}$ are themselves linear transformations, we shall denote linear transformations on subalgebras of (F) $)_{n}$-such as $T(\mathfrak{C}), E(R(\mathfrak{H})), E(L(\mathfrak{H}))$-by Greek capitals, so that if Σ is a linear transformation on $T(\mathfrak{U})$, say, we may write (without confusion) the image of T under Σ as $T \Sigma$.

An automorphism S of \mathfrak{A} determines an automorphism Σ of $T(\mathfrak{H})$ as follows: let T in $T(\mathfrak{H})$ be written in the form (7); then Σ is the mapping

$$
\begin{equation*}
T \rightarrow T \Sigma=f\left(I, R_{x S}, L_{x S}, R_{y S}, \cdots\right)=S^{-1} T S \tag{12}
\end{equation*}
$$

For if S is an automorphism of \mathfrak{A}, then $R_{x}=S R_{x} S^{-1}, L_{x}=S L_{x S} S^{-1}$ by (10), (11), and $T=f\left(I, R_{x}, L_{x}, R_{y}, \cdots\right)=f\left(I, S R_{x S} S^{-1}, S L_{x S} S^{-1}\right.$, $\left.S R_{y S} S^{-1}, \cdots\right)=S f\left(I, R_{x S}, L_{x S}, R_{y S}, \cdots\right) S^{-1}=S(T \Sigma) S^{-1}$, or $T \Sigma$ $=S^{-1} T S$. The mapping (12) is obviously an automorphism of $T(\mathfrak{H})$. Moreover, Σ induces automorphisms (which we do not distinguish notationally from Σ) on the subalgebras $E(R(\mathfrak{H})), E(L(\mathfrak{H}))$ of $T(\mathfrak{H})$:

$$
\begin{array}{ll}
T \rightarrow T \Sigma=f\left(R_{x S}, R_{y S}, \cdots\right), & \\
T \rightarrow T \Sigma \text { in } E(R(\mathfrak{H})) \text { as in (5), } \tag{14}\\
T \rightarrow f\left(L_{x S}, L_{y S}, \cdots\right), & \\
T \text { in } E(L(\mathfrak{H})) \text { as in (6). }
\end{array}
$$

If S determines Σ as in (12), then

$$
\begin{equation*}
R(\mathfrak{H}) \Sigma=R(\mathfrak{H}), \quad L(\mathfrak{H}) \Sigma=L(\mathfrak{H}) \tag{15}
\end{equation*}
$$

since $R_{x} \Sigma=R_{x S}$ in $R(\mathfrak{H})$ while $L_{x} \Sigma=L_{x S}$ in $L(\mathfrak{H})$, and the nonsingularity of Σ eliminates the possibility of proper inclusion.
2. Automorphisms of an algebra with unity element. Let \mathfrak{N} be a non-associative algebra of order n over \mathfrak{F} with unity element 1 . We consider the elements of \mathfrak{A} as comprising a linear space \mathbb{R} of order n over \mathfrak{F}. Let \mathfrak{B} be any (associative) algebra of linear transformations on \mathfrak{Z} which contains either $R(\mathfrak{H})$ or $L(\mathfrak{H})$. We intend to reconstruct \mathfrak{U} (in the sense of equivalence) as an algebra of residue classes of \mathfrak{B}.

Denote by \mathfrak{N} the set of all transformations N in \mathfrak{B} which annihilate 1 , that is, for which $1 N=0$. Then \mathfrak{R} is a right ideal of \mathfrak{B}. For if N, N_{1} are in \mathfrak{N}, then $1\left(\alpha N+\beta N_{1}\right)=\alpha 1 N+\beta 1 N_{1}=0$ for α, β in \mathfrak{F}, while $1 N T=0 T=0$ for any transformation T in \mathfrak{B}. Denote by \mathfrak{D} whichever set $R(\mathfrak{H})$ or $L(\mathfrak{H})$ is assumed to be contained in \mathfrak{B}, and by D_{x} correspondingly the transformation R_{x} or L_{x}. Then \mathfrak{B} is the supplementary sum $\mathfrak{B}=\mathfrak{D}+\mathfrak{N}$. For T in \mathfrak{B} may be written uniquely in the form $T=D_{t}+N, 1 T=t, N$ in \mathfrak{N}.

Since $1 T N=t N$ which is not necessarily zero, \mathfrak{N} is not in general a two-sided ideal of \mathfrak{B} and we are not able to form the difference algebra $\mathfrak{B}-\mathfrak{N}$ when we take residue classes [T] modulo \mathfrak{N}. Instead we form
the difference group $\mathfrak{B -} \mathfrak{N}$ of residue classes [T] modulo \mathfrak{N} and have as usual a linear set over \mathfrak{F} with respect to the operations $[T]+[U]$ $=[T+U], \lambda[T]=[\lambda T]$ of addition and scalar multiplication. Define multiplication in this linear set as follows:

$$
\begin{equation*}
[T][U]=[X] \quad \text { where } 1 X=1 T \cdot 1 U \tag{16}
\end{equation*}
$$

where the multiplication on the right is that in \mathfrak{N}. To see that for any T, U in \mathfrak{B} such an X exists, we need only to note that, if $X=D_{x}$ for $x=1 T \cdot 1 U$ in \mathfrak{A}, then $1 X=1 T \cdot 1 U$. This definition of multiplication is independent of the representatives T, U since if $[T]=\left[T_{1}\right]$, $[U]=\left[U_{1}\right]$, then there exist N, N_{1} in \mathfrak{N} such that $T_{1}=T+N$, $U_{1}=U+N_{1}$, and $1 T_{1} \cdot 1 U_{1}=1(T+N) \cdot 1\left(U+N_{1}\right)=1 T \cdot 1 U$. With this multiplication the distributive laws hold in $\mathfrak{F}-\mathfrak{N}$. Hence $\mathfrak{B -} \mathfrak{N}$ is a non-associative algebra over \mathfrak{F}. Since there are no difference algebras used in this paper, there should be no confusion in the use of the notation $\mathfrak{B}-\mathfrak{N}$ for this algebra with multiplication defined by (16).

Theorem 1. Let \mathfrak{A} be a non-associative algebra over \mathfrak{F} with unity element 1 , and \mathfrak{B} be any (associative) algebra of linear transformations on \mathfrak{A} containing either $R(\mathfrak{H})$ or $L(\mathfrak{H})$. If \mathfrak{N} is the right ideal of transformations in \mathfrak{B} annihilating 1 , then the non-associative algebra $\mathfrak{B}-\mathfrak{R}$ with multiplication defined by (16) is equivalent to \mathfrak{N}.

For in each residue class [T] there is a unique transformation D_{t} in $\mathfrak{D}(=R(\mathfrak{U})$ or $L(\mathfrak{U}))$ such that $1 T=1 D_{t}=t$. Then, since \mathfrak{H} contains neither absolute right nor absolute left divisors of zero, the (obviously linear) mapping

$$
\begin{equation*}
x \rightarrow D_{x} \rightarrow\left[D_{x}\right] \tag{17}
\end{equation*}
$$

is one-to-one on \mathfrak{A} to $\mathfrak{B -} \mathfrak{N}$. But

$$
\begin{equation*}
\left[D_{x}\right]\left[D_{y}\right]=\left[D_{x y}\right], \quad x, y \text { in } \mathfrak{N} \tag{18}
\end{equation*}
$$

since $x y=1 D_{x} \cdot 1 D_{y}=1 D_{x y}$. Then (17) is an equivalence of \mathfrak{A} and $\mathfrak{B}-\mathfrak{N}$ since $x y \rightarrow D_{x y} \rightarrow\left[D_{x y}\right]=\left[D_{x}\right]\left[D_{y}\right]$ under (17).

Now $T(\mathfrak{H}), E(R(\mathfrak{X})), E(L(\mathfrak{H}))$ are among the algebras of linear transformations on the vector space \mathbb{R} underlying \mathfrak{N} which contain either $R(\mathfrak{U})$ or $L(\mathfrak{U})$-or both, as in the case of $T(\mathfrak{H})$-and may be used as the algebra \mathfrak{F} in Theorem 1. We denote by $\mathfrak{N}_{\boldsymbol{T}}$ the set of all N in $T(\mathfrak{H})$ annihilating 1 and write $\mathfrak{N}_{R}=\mathfrak{N}_{T} \cap E(R(\mathfrak{N})), \mathfrak{N}_{L}=\mathfrak{N}_{T} \cap E(L(\mathfrak{V}))$. Then Theorem 1 implies that if multiplication in the respective algebras of residue classes is defined by (16) we have $\mathfrak{N} \cong T(\mathfrak{C})-\mathfrak{N}_{\boldsymbol{T}}$ $\cong E(R(\mathfrak{H}))-\mathfrak{R}_{R} \cong E(L(\mathfrak{H}))-\mathfrak{N}_{L}$.

In the proof of the next theorem we must distinguish between the
cases $\mathfrak{D}=R(\mathfrak{H})$ and $\mathfrak{D}=L(\mathfrak{H})$, and we use the following equations:

$$
\begin{array}{rlrl}
{\left[R_{x}\right]\left[R_{y}\right]} & =\left[R_{x y}\right] & =\left[R_{x} R_{y}\right], & \\
{\left[L_{x}\right]\left[L_{y}\right]} & =\left[L_{x y}\right] & =\left[L_{y} L_{x}\right], & \tag{20}\\
x, y \text { in } \mathfrak{X}
\end{array}
$$

verification of which is similar to that of (18).
Theorem 2. Let $\mathfrak{A}, \mathfrak{B}$, and \mathfrak{N} be as in Theorem 1, and \mathfrak{D} be $R(\mathfrak{H})$ or $L(\mathfrak{H})$, whichever is assumed to be in \mathfrak{B}. If Σ is an automorphism of \mathfrak{B} such that $\mathfrak{N} \Sigma=\mathfrak{N}$ and $\mathfrak{D} \Sigma=\mathfrak{D}$, then Σ determines an automorphism S_{Σ} of \mathfrak{A} as follows:

$$
\begin{equation*}
S_{\Sigma}: \quad x \rightarrow\left[D_{x}\right] \rightarrow\left[D_{x} \Sigma\right]=\left[D_{x^{\prime}}\right] \rightarrow x^{\prime}=x S_{\Sigma} \tag{21}
\end{equation*}
$$

for x, x^{\prime} in \mathfrak{A}, where the $\left[D_{x}\right]$ are elements of $\mathfrak{B}-\mathfrak{N} \cong \mathfrak{A}$.
Note first that the mapping

$$
\begin{equation*}
[T] \rightarrow[T \Sigma] \tag{22}
\end{equation*}
$$

of $\mathfrak{B}-\mathfrak{N}$ on itself is well-defined, since if $[T]=\left[T_{1}\right]$ then $T=T_{1}+N$ for N in \mathfrak{N}, and $T \Sigma=\left(T_{1}+N\right) \Sigma=T_{1} \Sigma+N \Sigma=T_{1} \Sigma+N_{1}$ with N_{1} in \mathfrak{N} since $\mathfrak{N} \Sigma=\mathfrak{N}$. Hence $[T \Sigma]=\left[T_{1} \Sigma\right]$. Inasmuch as the correspondences $x \rightarrow\left[D_{x}\right]$ and $\left[D_{x^{\prime}}\right] \rightarrow x^{\prime}$ are equivalences between \mathfrak{X} and $\mathfrak{B}-\mathfrak{N}$, we need only to show that (22) is an automorphism of $\mathfrak{B}-\mathfrak{N}$ in order to show that (21) is an automorphism of \mathfrak{N}. Now (22) is linear since $\alpha[T]+\beta[U]=[\alpha T+\beta U] \rightarrow[(\alpha T+\beta U) \Sigma]=[\alpha T \Sigma+\beta U \Sigma]=\alpha[T \Sigma]$ $+\beta[U \Sigma]$, and is nonsingular since $[T] \rightarrow[T \Sigma]=[0]$ implies $T \Sigma=N$ in $\mathfrak{N}, T=N \Sigma^{-1}=N_{1}$ in $\mathfrak{N},[T]=[0]$. Since $\mathfrak{D} \Sigma=\mathfrak{D}$, there exists an element x_{1} of \mathfrak{H} such that $D_{x} \Sigma=D_{x_{1}}$. But then $x_{1}=x^{\prime}$ since there is a unique transformation in \mathfrak{D} in each residue class of \mathfrak{B} modulo \mathfrak{N}. We may write $x^{\prime}=x S_{\Sigma}$ and

$$
\begin{equation*}
D_{x} \Sigma=D_{x s_{\Sigma}} \tag{23}
\end{equation*}
$$

We distinguish now between the cases $\mathfrak{D}=R(\mathfrak{H})$ and $\mathfrak{D}=L(\mathfrak{H})$. Let $\mathfrak{D}=R(\mathfrak{A})$ so that (19) holds. Then, since Σ is an automorphism of \mathfrak{B}, we have $\left[R_{x}\right]\left[R_{y}\right]=\left[R_{x} R_{y}\right] \rightarrow\left[\left(R_{x} R_{y}\right) \Sigma\right]=\left[\left(R_{x} \Sigma\right)\left(R_{y} \Sigma\right)\right]=\left[R_{x S_{\Sigma}} R_{y S_{\Sigma}}\right]$ $=\left[R_{x S_{\Sigma}}\right]\left[R_{y S_{\Sigma}}\right]=\left[R_{x} \Sigma\right]\left[R_{y} \Sigma\right]$ under (22) which is an automorphism of $\mathfrak{B}-\mathfrak{N}$ as desired. In case $\mathfrak{D}=L(\mathfrak{H})$ it follows from (20) that $\left[L_{x}\right]\left[L_{y}\right]=\left[L_{v} L_{x}\right] \rightarrow\left[\left(L_{y} L_{x}\right) \Sigma\right]=\left[\left(L_{y} \Sigma\right)\left(L_{x} \Sigma\right)\right]=\left[L_{y S_{\Sigma}} L_{x S_{\Sigma}}\right]$ $=\left[L_{x S_{\Sigma}}\right]\left[L_{y S_{\Sigma}}\right]=\left[L_{x} \Sigma\right]\left[L_{y} \Sigma\right]$ under (22), completing the proof of the theorem.

We shall have occasion in the proof of the next theorem to use the fact that if \mathfrak{B} contains both $R(\mathfrak{H})$ and $L(\mathfrak{H})$, and if both $R(\mathfrak{H})$ and $L(\mathfrak{H})$-as well of course as \mathfrak{N}-are their own images under an automorphism Σ of \mathfrak{F}, then

$$
\begin{equation*}
R_{x} \Sigma=R_{x S_{\Sigma}}, \quad L_{x} \Sigma=L_{x S_{\Sigma}} \tag{24}
\end{equation*}
$$

for S_{Σ} defined by (21).
Theorem 3. Let \mathfrak{A} be a non-associative algebra with unity element 1 and automorphism group ${ }^{(5)}$. Let $\mathfrak{乌}_{T}$ be the group of automorphisms Σ of $T(\mathfrak{H})$ such that $\mathfrak{N}_{T} \Sigma=\mathfrak{N}_{T}, R(\mathfrak{H}) \Sigma=R(\mathfrak{H}), L(\mathfrak{H}) \Sigma=L(\mathfrak{H})$. Then the correspondence $S \rightarrow \Sigma$ of (12) is an isomorphism of © onto \mathfrak{S}_{T}.

If S is in $\$ 5$ and $S \rightarrow \Sigma$ under (12), then $1(N \Sigma)=1 S^{-1} N S=1 N S=0 S$ $=0$ for N in \mathfrak{n}_{T}. The nonsingularity of Σ gives $\mathfrak{n}_{T} \Sigma=\mathfrak{n}_{T}$. By (15) we have Σ in $\mathfrak{S}_{\text {r }}$. By Theorem 2 this Σ determines an automorphism S_{Σ} of \mathfrak{A} :

$$
S_{\Sigma}: \quad x \rightarrow\left[R_{x}\right] \rightarrow\left[R_{x} \Sigma\right]=\left[R_{x S}\right] \rightarrow x S=x S_{\Sigma}
$$

for all x in \mathfrak{A}, or $S=S_{\Sigma}$. Conversely, let Σ be in $\mathfrak{y}_{\boldsymbol{T}}$. Then Σ determines an automorphism S_{Σ} of \mathfrak{A} which in turn determines an automorphism

$$
\begin{equation*}
\Sigma_{*}: \quad T \rightarrow T \Sigma_{*}=S_{\Sigma}^{-1} T S_{\Sigma}, \quad T \text { in } T(\mathfrak{H}) \tag{25}
\end{equation*}
$$

of $T(\mathfrak{H})$ by (12). Write T in the form (8). Then $T \Sigma_{*}=f\left(R_{x S_{\Sigma}}, L_{x S_{\Sigma}}\right.$, $\left.R_{y S_{\Sigma}}, \cdots\right)=f\left(R_{x} \Sigma, L_{x} \Sigma, R_{y} \Sigma, \cdots\right)=\left\{f\left(R_{x}, L_{x}, R_{y}, \cdots\right)\right\} \Sigma=T \Sigma$ by (12), (24), and the fact that Σ is an automorphism of $T(\mathfrak{H})$. That is, $\Sigma_{*}=\Sigma$. It is clear then that $S \rightarrow \Sigma$ is a one-to-one mapping of (5) onto $\mathfrak{S}_{\boldsymbol{r}}$. To see that $S \rightarrow \Sigma$ is an isomorphism we note only that if S_{1}, S_{2} are in (J), $S_{1} \rightarrow \Sigma_{1}, S_{2} \rightarrow \Sigma_{2}$, then for T in $T(\mathfrak{H})$ we have $T \Sigma_{1}=S_{1}^{-1} T S_{1}, T \Sigma_{1} \Sigma_{2}=S_{2}^{-1}\left(S_{1}^{-1} T S_{1}\right) S_{2}=\left(S_{1} S_{2}\right)^{-1} T\left(S_{1} S_{2}\right)$, or $S_{1} S_{2} \rightarrow \Sigma_{1} \Sigma_{2}$.

Variations in the proof of the following theorem from the proof above are trivial, consisting only of changes due to the fact that elements of $E(R(\mathfrak{A}))$ or $E(L(\mathfrak{H}))$ are generated by right or left multiplications alone.

Theorem 4. The correspondences $S \rightarrow \Sigma$ of (13) and (14) are isomorphisms of (5) onto \mathfrak{S}_{R} and \mathfrak{S}_{L} respectively, where \mathfrak{S}_{R} is the group of automorphisms Σ of $E\left(R(\mathfrak{U})\right.$) such that $\mathfrak{N}_{R} \Sigma=\mathfrak{\Re}_{R}, R(\mathfrak{H}) \Sigma=R(\mathfrak{H})$, and \mathfrak{Y}_{L} is the group of automorphisms Σ of $E\left(L(\mathfrak{H})\right.$) such that $\mathfrak{n}_{L} \Sigma=\mathfrak{\Re}_{L}$, $L(\mathfrak{U}) \Sigma=L(\mathfrak{H})$.
3. Automorphisms of an algebra without unity element. In case we are concerned with an algebra \mathfrak{N}_{0} of order $(n-1)$ over \mathfrak{F} without a unity element, we can easily modify the results of $\S 2$ to include \mathfrak{H}_{0}. For we adjoin a unity element 1 to \mathfrak{N}_{0} in the usual fashion to obtain an algebra \mathfrak{N} of order n over \mathfrak{F} containing \mathfrak{N}_{0} (in the sense of equivalence) as an ideal. Every element x of \mathfrak{A} may be written uniquely in the form

$$
\begin{equation*}
x=\xi 1+x_{0}, \quad \xi \text { in } \mathfrak{F}, x_{0} \text { in } \mathfrak{N}_{0} \tag{26}
\end{equation*}
$$

and if $y=\eta 1+y_{0}$, then $x+y=(\xi+\eta) 1+\left(x_{0}+y_{0}\right), \delta x=(\delta \xi) 1+\left(\delta x_{0}\right)$ for δ in $\mathfrak{F}, x y=(\xi \eta) 1+\left(\eta x_{0}+\xi y_{0}+x_{0} y_{0}\right)$. We shall write $\mathfrak{N}=1 \mathfrak{F}+\mathfrak{H}_{0}$ for the algebra so defined. Any automorphism S_{0} of \mathfrak{Q}_{0} may be extended in a unique fashion to an automorphism S of \mathfrak{A} by defining

$$
\begin{equation*}
S: \quad x \rightarrow x S=\xi 1+x_{0} S_{0} \tag{27}
\end{equation*}
$$

x as in (26). Note that S induces the automorphism S_{0} within \mathfrak{U}_{0}.
It is apparent that an automorphism S_{0} of \mathfrak{H}_{0} determines a unique automorphism Σ of $T(\mathfrak{H})$ as follows: $S_{0} \rightarrow S$ by (27), $S \rightarrow \Sigma$ by (12). Moreover, the linear subspaces $R\left(\mathfrak{H}_{0}, \mathfrak{Y}\right)$ and $L\left(\mathfrak{H}_{0}, \mathfrak{H}\right)$ of $T(\mathfrak{H})$ are their own images under Σ. For if x_{0} is in \mathscr{H}_{0}, then $R_{x_{0}} \Sigma=R_{x_{0} S}=R_{x_{0} S_{0}}$ is in $R\left(\mathfrak{H}_{0}, \mathfrak{H}\right)$ and $L_{x_{0}} \Sigma=L_{x_{0} S}=L_{x_{0} S_{0}}$ is in $L\left(\mathfrak{H}_{0}, \mathfrak{H}\right)$.

If $\mathfrak{B}-\mathfrak{N}$ is the non-associative algebra equivalent to \mathfrak{H} which was defined in $\S 2$, then \mathfrak{N}_{0} is equivalent to the ideal \mathfrak{C}_{0} of $\mathfrak{B}-\mathfrak{N}$ consisting of residue classes $\left[D_{x_{0}}\right.$] for x_{0} in \mathfrak{N}_{0}, that is, for $D_{x_{0}}$ in $\mathfrak{D}_{0}=R\left(\mathfrak{H}_{0}, \mathfrak{N}\right)$ or $L\left(\mathfrak{H}_{0}, \mathfrak{Y}\right)$ according as $\mathfrak{D}=R(\mathfrak{H})$ or $L(\mathfrak{H})$. For, by Theorem $1, \mathfrak{Y}$ is isomorphic to $\mathfrak{B}-\mathfrak{N}$ under the mapping (17). Since \mathfrak{N}_{0} is an ideal of \mathfrak{N}, the mapping

$$
\begin{equation*}
x_{0} \rightarrow\left[D_{x_{0}}\right], \quad x_{0} \text { in } \mathfrak{N}_{0} \tag{28}
\end{equation*}
$$

determines an ideal \mathfrak{C}_{0} of $\mathfrak{B}-\mathfrak{R}$, and $\mathfrak{C}_{0} \cong \mathfrak{H}_{0}$.
Let Σ be an automorphism of \mathfrak{B} such that $\mathfrak{N} \Sigma=\mathfrak{N}$ and $\mathfrak{D}_{0} \Sigma=\mathfrak{D}_{0}$. Then Σ determines an automorphism $S_{0 \Sigma}$ of \mathfrak{H}_{0} as follows:

$$
\begin{equation*}
S_{0 \Sigma}: \quad x_{0} \rightarrow\left[D_{x_{0}}\right] \rightarrow\left[D_{x_{0}} \Sigma\right]=\left[D_{x_{0}^{\prime}}\right] \rightarrow x_{0}^{\prime}=x_{0} S_{0 \Sigma} \tag{29}
\end{equation*}
$$

for x_{0}, x_{0}^{\prime} in \mathfrak{H}_{0}. For $\mathfrak{D}=I \mathfrak{F}+\mathfrak{D}_{0}$, and any automorphism of \mathfrak{B} leaves invariant the subspace $I \mathscr{F}$ of order 1 , so that $\mathfrak{D} \Sigma=\mathfrak{D}$. Then by Theorem 2, Σ determines an automorphism S_{Σ} of \mathfrak{A}. But S_{Σ} induces on \mathfrak{N}_{0} the automorphism (29) since $D_{x_{0}} \Sigma=D_{x_{0}^{\prime}}$ in \mathfrak{D}_{0} implies x_{0}^{\prime} is in \mathfrak{H}_{0}. Thus $x_{0} \rightarrow\left[D_{x_{0}}\right] \rightarrow\left[D_{x_{0}} \Sigma\right]=\left[D_{x_{0}^{\prime}}\right] \rightarrow x_{0}^{\prime}=x_{0} S_{\Sigma}$ is in \mathscr{H}_{0}, or S_{Σ} induces $S_{0 \Sigma}$ on \mathfrak{H}_{0}.

Theorem 5. Let \mathfrak{N}_{0} be a non-associative algebra without unity element, and let $\mathfrak{V}=1 \mathfrak{F}+\mathfrak{H}_{0}$. Let \mathfrak{Y}_{T}^{0} be the group of automorphisms Σ of
 Then the correspondence $S_{0} \rightarrow S \rightarrow \Sigma$ of (27) and (12) is an isomorphism of the automorphism group \mathfrak{S}_{0} of \mathfrak{N}_{0} onto \mathfrak{E}_{T}^{0}.

For if S_{0} is in \mathscr{S}_{0}, then $S_{0} \rightarrow S \rightarrow \Sigma$ in \mathfrak{E}_{T}^{0} and $\Sigma \rightarrow S_{\Sigma}=S$ by Theorem 3. But then S induces the automorphism $S_{0 \Sigma}$ within \mathfrak{N}_{0}. That is, $S_{0 \Sigma}=S_{0}$. Conversely, if Σ is in \mathfrak{S}_{7}^{0}, then $\Sigma \rightarrow S_{0 \Sigma}$ in \mathfrak{H}_{0} by (29). But $S_{0 \Sigma} \rightarrow S_{\Sigma} \rightarrow \Sigma_{*}$ by (27) and (12) and $\Sigma_{*}=\Sigma$ by Theorem 3. Hence the
mapping $S_{0} \rightarrow S \rightarrow \Sigma$ of \mathscr{G}_{0} on \mathfrak{S}_{T}^{0} is one-to-one, and is by Theorem 3 an isomorphism.

The results analogous to Theorem 4 for algebras \mathfrak{A}_{0} without unity quantity may be stated as follows: let \mathfrak{S}_{R}^{0} be the group of automorphisms Σ of $E\left(R\left(\mathfrak{H}_{1}\right)\right)$ such that $R\left(\mathfrak{H}_{0}, \mathfrak{H}\right) \Sigma=R\left(\mathfrak{H}_{0}, \mathfrak{U}^{\prime}\right), \mathfrak{N}_{R} \Sigma=\mathfrak{N}_{R}$. Then the correspondence $S_{0} \rightarrow S \rightarrow \Sigma$ of (27) and (13) is an isomorphism of the automorphism group \mathfrak{W}_{0} of \mathfrak{N}_{0} onto \mathfrak{S}_{R}^{0}. Let \mathfrak{S}_{L}^{0} be the group of automorphisms Σ of $E(L(\mathfrak{H}))$ such that $L\left(\mathfrak{H}_{0}, \mathfrak{Y}\right) \Sigma=L\left(\mathfrak{H}_{0}, \mathfrak{U}\right)$, $\mathfrak{n}_{L} \Sigma=\mathfrak{n}_{L}$. Then the correspondence $S_{0} \rightarrow S \rightarrow \Sigma$ of (27) and (14) is an isomorphism of \mathscr{G}_{0} onto \mathfrak{S}_{L}^{0}.
4. Inner automorphisms Σ of $T(\mathfrak{X})$. An automorphism Σ of the associative algebra $T(\mathfrak{H})$ is called inner in case $T \rightarrow T \Sigma=K^{-1} T K$ for some nonsingular element K of $T(\mathfrak{H})$. We are concerned in this section with automorphisms S of \mathfrak{A} which determine inner automorphisms Σ of $T(\mathfrak{Y})$ under (12).

The group Ω of all inner automorphisms of $T(\mathfrak{H})$ is an invariant subgroup of the automorphism group of $T(\mathfrak{H})$. If \mathfrak{X}_{T} is the group of automorphisms of $T(\mathfrak{H})$ described in Theorem 3, then the intersection $\mathfrak{S}_{T} \cap \Omega$ is an invariant subgroup of \mathfrak{S}_{T}. But then there is an invariant subgroup \mathfrak{F} of the automorphism group (\mathbb{F} of \mathfrak{N} such that $\mathfrak{F} \cong \mathfrak{S}_{T} \cap \mathfrak{R}$ under the correspondence $S \rightarrow \Sigma$ of (12). The elements of \mathfrak{J} are characterized as those automorphisms of \mathfrak{A} which are themselves elements of $T(\mathfrak{U})$ by

Theorem 6. Let \mathfrak{H} be a non-associative algebra over \mathfrak{F} with unity element 1 and automorphism S determining an automorphism Σ of $T(\mathfrak{Y})$ by (12). Then Σ is inner if and only if S is in $T(\mathfrak{H})$.

If S is in $T(\mathfrak{H})$, then $T \rightarrow T \Sigma=S^{-1} T S$ is an inner automorphism of $T(\mathfrak{H})$. Conversely, if Σ is inner, there exists a nonsingular element K of $T(\mathfrak{H})$ such that $T \Sigma=K^{-1} T K$ for all T in $T(\mathfrak{H})$. In particular, $R_{x S}=R_{x} \Sigma=K^{-1} R_{x} K$. Let $1 K=k$ so that $x S L_{k}=k \cdot x S=k R_{x} S$ $=1 K K^{-1} R_{x} K=x K$ for all x in \mathfrak{A}, or $S L_{k}=K$. Since S and K are nonsingular, L_{k}^{-1} exists. Moreover, L_{k}^{-1} is in $T(\mathfrak{H})$, and $S=K L_{k}^{-1}$ is in $T(\mathfrak{H})$.

Perhaps it should be pointed out that Theorem 6 yields nothing in the case of central simple algebras (that is, algebras which are simple for all scalar extensions). For although it is true that, if \mathfrak{A} is central simple, then $T(\mathfrak{H})$ is also and-by a well known theorem concerning associative algebras-every automorphism Σ of $T(\mathfrak{H})$ is inner, so that Theorem 6 implies that every automorphism S of \mathfrak{H} is in $T(\mathfrak{H})$, it is also true $[1, \S 8]$ that in this case $T(\mathfrak{H})=(\mathfrak{F})_{n}$, the algebra
of all linear transformations on \mathfrak{N}. Of course it is vacuous then to say that S is in $T(\mathfrak{H})$.
5. The right ideals $\mathfrak{n}_{T}, \mathfrak{N}_{R}, \mathfrak{N}_{L}$. We now make a more thorough analysis of the right ideals $\mathfrak{N}_{T}, \mathfrak{N}_{R}, \mathfrak{N}_{L}$ of $T(\mathfrak{U}), E(R(\mathfrak{H})), E(L(\mathfrak{U}))$, respectively, and arrive in particular at criteria for the (right, left) simplicity of an algebra \mathfrak{A} with unity quantity.

Theorem 7. An algebra \mathfrak{A} with unity quantity is both commutative and associative if and only if $\mathfrak{N}_{T}=0$.

For $\mathfrak{N}_{T}=0$ implies that $L_{x}-R_{x}=R_{x} R_{y}-R_{x y}=0$ for all x, y in \mathfrak{N}. That is,

$$
\begin{equation*}
R_{x}=L_{x}, \quad R_{x} R_{y}=R_{x y} \tag{30}
\end{equation*}
$$

\mathfrak{A} is both commutative and associative. Conversely, if (30) holds for all x, y in \mathfrak{A}, then T in $T(\mathfrak{H})$ has the form $T=f\left(R_{x}, L_{x}, R_{y}, \cdots\right)$ $=g\left(R_{x}, R_{y}, \cdots\right)=R_{g(x, y, \cdots)}$. Then $1 T=0$ implies $g(x, y, \cdots)=0$ or $T=0$. Hence $\mathfrak{R}_{T}=0$.

The center \mathfrak{Z} of \mathfrak{A} consists of all elements c in \mathfrak{A} such that

$$
\begin{equation*}
x c=c x, \quad c(x y)=(c x) y=x(c y) \tag{31}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
c L_{x}=c R_{x}, \quad c R_{x y}=c R_{x} R_{y}=c R_{y} L_{x} \tag{32}
\end{equation*}
$$

for all x, y in \mathfrak{N}.
Theorem 8. An element c is in the center 3 of an algebra \mathfrak{A} with unity quantity if and only if $c \mathfrak{R}_{T}=0$.

Certainly $L_{x}-R_{x}, R_{x y}-R_{x} R_{y}, R_{x y}-R_{y} L_{x}$ are in \mathfrak{N}_{T} for all x, y in \mathfrak{N}. Hence if $c \Re_{T}=0$, it follows that $c\left(L_{x}-R_{x}\right)=c\left(R_{x y}-R_{x} R_{y}\right)$ $=c\left(R_{x y}-R_{y} L_{x}\right)=0$ or (32) holds, c is in the center of \mathfrak{N}. Conversely, if c is in the center of \mathfrak{A}, and if we write T in $T(\mathfrak{H})$ as in (8), it is seen by repeated application of (32) that $c T=c f\left(R_{x}, L_{x}, R_{y}, \cdots\right)$ $=c R_{g(x, y, \cdots)}$ where the non-associative polynomial $g(x, y, \cdots)$ $=1 f\left(R_{x}, L_{x}, R_{y}, \cdots\right)=1 T$. But if T is in \mathfrak{N}_{T}, then $1 T=0$ so that $g(x, y, \cdots)=0$ and $c T=0, c \mathfrak{N}_{T}=0$.

An algebra \mathfrak{N}, which is not the zero algebra of order 1 , is called simple (right simple, left simple) in case the only ideals (right ideals, left ideals) of \mathfrak{A} are 0 and \mathfrak{A}.

Theorem 9. A non-associative algebra \mathfrak{A} with unity quantity is right simple if and only if \mathfrak{N}_{R} is a maximal proper right ideal of $E(R(\mathfrak{H})$).

If \mathfrak{R}_{R} is a maximal proper right ideal of $E(R(\mathfrak{H}))$, then the only
right ideal of $E\left(R(\mathfrak{H})\right.$) containing $\mathfrak{\Re}_{R}$ properly is $E(R(\mathfrak{H}))$ itself. We assume that \mathfrak{A} is not right simple, so that \mathfrak{H} has a right ideal $\mathfrak{Q} \neq 0$, \mathfrak{N}. Let \mathfrak{P} be the linear set $\mathfrak{P}=R(\mathfrak{Q}, \mathfrak{A})+\mathfrak{N}_{R}$. Then P in \mathfrak{P} has the form $P=R_{q}+N, q$ in \mathfrak{Q}, N in \mathfrak{N}_{R}, and any element T of $E(R(\mathfrak{H}))$ may be written as $T=R_{t}+N_{1}, t$ in \mathfrak{A}, N_{1} in \mathfrak{N}_{R}, so that $P T$ $=\left(R_{q}+N\right)\left(R_{t}+N_{1}\right)=R_{q} R_{t}+R_{q} N_{1}+N T=R_{q t}+\left(R_{q} R_{t}-R_{q t}\right)+R_{q} N_{1}$ $+N T$. Now $R_{q} N_{1}=R_{a}+N_{2}$ for a in \mathfrak{N}, N_{2} in \mathfrak{N}_{R}, and $1 R_{q} N_{1}=1 R_{a}$ $+1 N_{2}$ or $a=q N_{1}$. Since $N_{1}=f\left(R_{x}, R_{y}, \cdots\right)$ while \mathfrak{Q} is a right ideal of \mathfrak{N}, it follows that $a=q N_{1}=q f\left(R_{x}, R_{y}, \cdots\right)$ is in \mathfrak{Q}. Hence $P T=R_{q t+q N_{1}}+\left(R_{q} R_{t}-R_{q t}+N_{2}+N T\right)$ is in \mathfrak{B} since $q t+q N_{1}$ is in \mathfrak{Q} while $R_{q} R_{t}-R_{q t}+N_{2}+N T$ is in \mathfrak{N}_{R}. Hence \mathfrak{P} is a right ideal of $E\left(R(\mathfrak{H})\right.$) containing $\mathfrak{\Re}_{R}$. Since $\mathfrak{Q} \neq 0, \mathfrak{U}$, it follows that $R(\mathfrak{Q}, \mathfrak{A})$, being of the same dimension over \mathfrak{F} as \mathfrak{Q}, is neither 0 nor $R(\mathfrak{H})$, and then $\mathfrak{B} \neq \mathfrak{N}_{R}, E(R(\mathfrak{H}))$, a contradiction. Hence \mathfrak{N} is right simple.

Conversely, let \mathfrak{P} be any proper right ideal of $E(R(\mathfrak{H}))$ which contains \mathfrak{N}_{R}. Consider the set \mathfrak{Q} of residue classes $[P]$ modulo \mathfrak{N}_{R} for P in \mathfrak{P}. Then \mathfrak{Q} is a linear subset of $E(R(\mathfrak{H}))-\mathfrak{N}_{R} \cong \mathfrak{A}$. Moreover, if $[P]$ is any element of \mathfrak{Q}, we write $P=R_{p}+N$ for p in \mathfrak{A}, N in \mathfrak{N}_{R}. Let $\left[R_{t}\right]$ be any element of $E(R(\mathfrak{H}))-\mathfrak{N}_{R}$. Then $P R_{t}=R_{p} R_{t}+N R_{t}$ $=P_{1}$ in \mathfrak{P} since \mathfrak{P} is a right ideal of $E(R(\mathfrak{C}))$. Then

$$
\begin{equation*}
[P]\left[R_{t}\right]=\left[R_{p}\right]\left[R_{t}\right]=\left[R_{p} R_{t}\right]=\left[P_{1}\right] \tag{33}
\end{equation*}
$$

in \mathfrak{Q} by (19), and \mathfrak{Q} is a right ideal of $E(R(\mathfrak{H}))-\mathfrak{N}_{R} \cong \mathfrak{N}$. If \mathfrak{A} is right simple, then either $\mathfrak{Q}=[0]$ or $\mathfrak{Q}=E(R(\mathfrak{H}))-\mathfrak{N}_{R}$. In the latter case, \mathfrak{Q} contains $[I], \mathfrak{B}$ contains $I+N_{1}$ for some N_{1} in \mathfrak{N}_{R}. Since \mathfrak{B} also contains N_{1}, it follows that I is in \mathfrak{B}, whence $\mathfrak{B}=E(R(\mathfrak{H}))$, a contradiction. Hence $\mathfrak{Q}=[0], \mathfrak{P}=\mathfrak{N}_{R}$, and \mathfrak{N}_{R} is a maximal proper right ideal of $E(R(\mathfrak{U}))$.

An exactly symmetrical argument, involving left multiplications instead of right multiplications, suffices to prove

Theorem 10. A non-associative algebra \mathfrak{A} with unity quantity is left simple if and only if \mathfrak{n}_{L} is a maximal proper right ideal of $E(L(\mathfrak{H}))$.

Only obvious variations on the proof above are required in the proof of

Theorem 11. A non-associative algebra \mathfrak{N} with unity quantity is simple if and only if $\mathfrak{\Re}_{T}$ is a maximal proper right ideal of $T(\mathfrak{H})$.

For example, to prove the converse part of the theorem, we let \mathfrak{B} be any proper right ideal of $T(\mathfrak{H})$ which contains \mathfrak{N}_{T}, and let \mathfrak{Q} be the linear space of residue classes $[P]$ modulo \mathfrak{N}_{T} for P in \mathfrak{P}. We may write $P=R_{p}+N=L_{p}+N_{0}$ for N, N_{0} in \mathfrak{N}_{T}, and let $\left[R_{t}\right]=\left[L_{t}\right]$ be
any element of $T(\mathfrak{Z})-\mathfrak{N}_{T}$. Then we have (33) as before, where now the quantities involved are residue classes of $T(\mathfrak{H})$ modulo \mathfrak{R}_{T}, but also we have $P L_{t}=L_{p} L_{t}+N_{0} L_{t}=P_{2}$ in \mathfrak{B} so that $\left[L_{t}\right][P]=\left[L_{t}\right]\left[L_{p}\right]$ $=\left[L_{p} L_{t}\right]=\left[P_{2}\right]$ in \mathfrak{Q} by (20), and \mathfrak{Q} is an ideal of $T(\mathfrak{Y})-\mathfrak{N}_{T} \cong \mathfrak{N}$. The remainder of the proof is as before.

We conclude with an analysis of the structure of the right ideal \mathfrak{N}_{T} of $T(\mathfrak{H})$ in case \mathfrak{A} of order n over \mathfrak{F} (with unity quantity) is simple. In this case $T(\mathfrak{X})=(\mathfrak{Z})_{s}$ where the center \mathfrak{Z} of \mathfrak{A} is a field of degree t over \mathfrak{F}, and $n=s t$ (see $[1, \S \S 8,19]$).

Theorem 12. Let \mathfrak{A} be a simple non-associative algebra of order $n=s t$ over \mathfrak{F} with unity quantity and with center \mathbb{B} of degree t over \mathfrak{F}. Then $\mathfrak{N}_{T}=\Re+(\mathfrak{Z})_{s-1}$, where the radical $\mathfrak{\Re}$ of \mathfrak{N}_{T} has order $(s-1)$ over \mathfrak{B} and the semi-simple component of \mathfrak{R}_{T} is the total matric algebra (ß) $)_{s-1}$ of degree ($s-1$) over 8.

For \mathfrak{A} is central simple over \mathfrak{B}. Let $\left(1, u_{2}, \cdots, u_{s}\right)$ be a fixed basis of \mathfrak{A} over \mathfrak{B}. Then, since $T(\mathfrak{H})=(\mathfrak{B})_{s}$, it follows from Theorem 8 that $\mathfrak{N}_{\boldsymbol{T}}$ (over \mathbb{B}) consists of all s-by-s matrices with first row zero. But the structure of this algebra of matrices, with principal idempotent

$$
E=\left(\begin{array}{ll}
0 & 0 \\
0 & I_{s-1}
\end{array}\right)
$$

is easily determined. Its radical \Re consists of all matrices (with elements in 3) of the form

$$
\left(\begin{array}{ll}
0 & 0 \\
U & 0
\end{array}\right)
$$

where U is any ($s-1$)-by-1 matrix. Its semi-simple component consists of all matrices (with elements in \mathbb{B}) of the form

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & V
\end{array}\right)
$$

where V is any ($s-1$)-rowed square matrix. This is a total matric algebra (3) $)_{s-1}$.

References

1. A. A. Albert, Non-associative algebras. I. Fundamental concepts and isotopy, Ann. of Math. (2) vol. 43 (1942) pp. 685-708.
2. -, Quasigroups. II. Trans. Amer. Math. Soc. vol. 55 (1944) pp. 401-419.
3. N. Jacobson, A note on non-associative algebras, Duke Math. J. vol. 3 (1937) pp. 544-548.

The Institute for Advanced Study

[^0]: Presented to the Society, August 23, 1946; received by the editors August 2, 1946, and, in revised form, November 13, 1946.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

