ON THE CHARACTERISTIC EQUATIONS OF CERTAIN MATRICES

ALFRED BRAUER

In a paper to be published soon in the Annals of Mathematical Statistics, R. v. Mises obtains the following theorem on matrices from results in the theory of probability.

Theorem. Let $A=\left(a_{\kappa \lambda}\right), B=\left(b_{\kappa \lambda}\right)$, and $C=\left(c_{\kappa \lambda}\right)$ be square matrices of order n. If the elements of A and C satisfy the conditions

$$
\begin{array}{lr}
r_{\kappa}=\sum_{\nu=1}^{n} a_{\kappa \nu}=0 & (\kappa=1,2, \cdots, n), \\
s_{\lambda}=\sum_{\nu=1}^{n} a_{\nu \lambda}=0 & (\lambda=1,2, \cdots, n) \\
c_{\kappa \lambda}=c_{\kappa}+c_{\lambda} & (\kappa, \lambda=1,2, \cdots, n) \tag{3}
\end{array}
$$

where $c_{1}, c_{2}, \cdots, c_{n}$ are arbitrary numbers, then the matrices $A B$ and $A(B+C)$ have the same characteristic equation.

In the following a purely algebraic proof of this theorem will be given.

Proof. We set

$$
\sum_{\nu=1}^{n} a_{k} c_{\nu}=q_{k} \quad(\kappa=1,2, \cdots, n) .
$$

Then we have by (1) and (3)
(4)

$$
\begin{aligned}
& \left.A C=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{ccc}
c_{1}+c_{1} & c_{1}+c_{2} & \cdots \\
c_{1}+c_{n} \\
c_{2}+c_{1} & c_{2}+c_{2} & \cdots \\
c_{2}+c_{n} \\
\cdots & \cdots & \cdots
\end{array}\right) \cdot \cdots \cdot \cdot\right\} \\
& =\left(\begin{array}{cc}
q_{1}+c_{1} r_{1} & q_{1}+c_{2} r_{1} \cdots q_{1}+c_{n} r_{1} \\
q_{2}+c_{1} r_{2} & q_{2}+c_{2} r_{2} \cdots q_{2}+c_{n} r_{2} \\
\cdots \cdots \cdot & \cdots \cdots \cdots \\
q_{v}+c_{1} r_{n} & q_{n}+c_{2} r_{n} \cdots q_{n}+c_{n} r_{n}
\end{array}\right)=\left(\begin{array}{ccc}
q_{1} & q_{1} \cdots q_{1} \\
q_{2} & q_{2} \cdots & q_{2} \\
\cdots & \cdots & \cdot \\
q_{n} & q_{n} \cdots q_{n}
\end{array}\right) .
\end{aligned}
$$

Let P be the triangular matrix
Received by the editors December 2, 1946.

$$
P=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 1 & 0 & \cdots & 0 \\
. & . & . & . & . & . \\
1 & 1 & 1 & 1 & \cdots & 1
\end{array}\right) ; \quad P^{-1}=\left(\begin{array}{rrrrr}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
0 & -1 & 1 & \cdots & 0 \\
. & . & . & . & . \\
0 & 0 & \cdots & 0 & -1
\end{array}\right) .
$$

We have by (4)
$\left.P A C=\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdot \\ 1 & 1 & \cdots & 1\end{array}\right) 0 . \begin{array}{llll}q_{1} & q_{1} & \cdots & q_{1} \\ q_{2} & q_{2} & \cdots & q_{2} \\ \cdots & 1 & \cdots & 1\end{array}\right)$
(5)
since by (2)

$$
\sum_{\nu=1}^{n} q_{\nu}=\sum_{\nu=1}^{n} \sum_{\lambda=1}^{n} a_{\nu \lambda} c_{\lambda}=\sum_{\lambda=1}^{n} c_{\lambda} \sum_{\nu=1}^{n} a_{\nu \lambda}=\sum_{\lambda=1}^{n} c_{\lambda} s_{\lambda}=0
$$

Hence
(6)

$$
\left.P A C P^{-1}=\left(\begin{array}{ccccc}
q_{1} & q_{1} & \cdots & q_{1} \\
q_{1}+q_{2} & q_{1}+q_{2} & \cdots & q_{1}+q_{2} \\
. & \cdot & \cdots & \cdots & \cdots
\end{array}\right) \cdot .\right]\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
-1 & 1 & \cdots & 0 & 0 \\
0 & & 0 & \cdots & 0
\end{array}\right)\left(\begin{array}{cccc}
\\
0 & \cdots & \cdots & \cdot \\
0 & 0 & \cdots & -1
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & q_{1} \\
0 & 0 & \cdots & 0
\end{array} q_{1}+q_{2} .\right.
$$

On the other hand, it follows from (2), similarly as in (5), that $P A$, and therefore also $P A B$ and $P A B P^{-1}$, are matrices in which all the
elements of the last row are equal to 0 . Hence $P A B P^{-1}$ has the form

$$
P A B P^{-1}=\left(\begin{array}{ccc}
& & t_{1} \tag{7}\\
D_{n n} & t_{2} \\
\vdots \\
\hline & & t_{n-1} \\
0 & 0 \cdots & 0
\end{array}\right)
$$

where $D_{n n}$ is a square matrix of order $n-1$ and $t_{1}, t_{2}, \cdots, t_{n-1}$ are certain elements. It follows from (7) and (6) that

If we denote the characteristic polynomial of the matrix $D_{n n}$ by $f(x)$, then it follows from (7) and (8) that $P A B P^{-1}$ and $P A(B+C) P^{-1}$ both have the characteristic equation

$$
\begin{equation*}
x f(x)=0 . \tag{9}
\end{equation*}
$$

Since similar matrices have the same characteristic equation, (9) is also the characteristic equation of $A B$ and $A(B+C)$.

