NOTE ON HADAMARD'S DETERMINANT THEOREM

JOHN WILLIAMSON

Introduction. We shall call a square matrix A of order n an Hadamard matrix or for brevity an H-matrix, if each element of A has the value ± 1 and if the determinant of A has the maximum possible value $n^{n / 2}$. It is known that such a matrix A is an H-matrix [1] ${ }^{1}$ if, and only if, $A A^{\prime}=n E_{n}$ where A^{\prime} is the transpose of A and E_{n} is the unit matrix of order n. It is also known that, if an H-matrix of order $n>1$ exists, n must have the value 2 or be divisible by 4 . The existence of an H-matrix of order n has been proved [2,3] only for the following values of $n>1:$ (a) $n=2$, (b) $n=p^{h}+1 \equiv 0 \bmod 4, p$ a prime, (c) n $=m\left(p^{h}+1\right)$ where $m \geqq 2$ is the order of an H-matrix and p is a prime, (d) $n=q(q-1)$ where q is a product of factors of types (a) and (b), (e) $n=172$ and for n a product of any number of factors of types (a), (b), (c), (d) and (e).

In this note we shall show that an H-matrix of order n also exists when (f) $n=q(q+3)$ where q and $q+4$ are both products of factors of types (a) and (b), (g) $n=n_{1} n_{2}\left(p^{h}+1\right) p^{h}$, where $n_{1}>1$ and $n_{2}>1$ are orders of H-matrices and p is an odd prime, and (h) $n=n_{1} n_{2} m(m+3)$ where $n_{1}>1$ and $n_{2}>1$ are orders of H-matrices and m and $m+4$ are both of the form $p^{h}+1, p$ an odd prime.

It is interesting to note the presence of the factors n_{1} and n_{2} in the types (g) and (h) and their absence in the types (d) and (f). Thus, if p is a prime and $p^{h}+1 \equiv 0 \bmod 4$, an H-matrix of order $p^{h}\left(p^{h}+1\right)$ exists but, if $p^{h}+1 \equiv 2 \bmod 4$, we can only be sure of the existence of an H-matrix of order $n_{1} n_{2} p^{h}\left(p^{h}+1\right)$ where $n_{1}>1$ and $n_{2}>1$ are orders of H-matrices. This is analogous to the simpler result that, if $p^{h}+1 \equiv 0$ $\bmod 4$ an H-matrix of order $p^{h}+1$ exists but, if $p^{h}+1 \equiv 2 \bmod 4$, we can only be sure of the existence of an H-matrix of order $n\left(p^{h}+1\right)$ where $n>1$ is the order of an H-matrix.

We shall denote the direct product of two matrices A and B by $A \cdot B$ and the unit matrix of order n by E_{n}.

Theorems on the existence of H-matrices. If a symmetric H-matrix of order $m>1$ exists, there exists an H-matrix H of order m with the form

$$
H=\left(\begin{array}{cc}
1 & e \\
e^{\prime} & D
\end{array}\right)
$$

Received by the editors December 6, 1946.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.
where e is the row vector (1,1, $\cdots, 1$) of dimension $m-1$ and e^{\prime} the column vector which is the transpose of e. Since H is a symmetric H-matrix

$$
H^{2}=H H^{\prime}=m E_{m}
$$

and accordingly

$$
\left(\begin{array}{cc}
m & e+e D \\
e^{\prime}+D e^{\prime} & e^{\prime} e+D^{2}
\end{array}\right)=\left(\begin{array}{cc}
m & 0 \\
0 & m E_{m-1}
\end{array}\right)
$$

Therefore

$$
\begin{equation*}
e D=-e, \quad D e^{\prime}=-e^{\prime} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{2}=m E_{m-1}-R \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
R=e^{\prime} e \tag{3}
\end{equation*}
$$

and R is the square matrix of order $m-1$ each element of which has the value 1 . It follows easily that

$$
\begin{equation*}
R^{2}=(m-1) R \tag{4}
\end{equation*}
$$

and by (1) and (3) that

$$
\begin{equation*}
R D=-R=D R \tag{5}
\end{equation*}
$$

If $F=2 E_{m-1}-R, F$ is a symmetric matrix each element of which has the value ± 1. Further

$$
\begin{equation*}
F D=D F \tag{6}
\end{equation*}
$$

by (5) and

$$
\begin{equation*}
F^{2}=4 E_{m-1}+(m-5) R \tag{7}
\end{equation*}
$$

by (4). If n is a product of factors of types (a) and (b) there exists [3, p. 67] an H-matrix of order n with the form $E_{n}+S$ where S is skew-symmetric so that

$$
\begin{equation*}
S^{2}=-(n-1) E_{n} \tag{8}
\end{equation*}
$$

If

$$
W=F \cdot E_{n}+D \cdot S
$$

each element of W has the value ± 1 and

$$
\begin{align*}
W W^{\prime} & =\left(F \cdot E_{n}+D \cdot S\right)\left(F \cdot E_{n}-D \cdot S\right) \\
& =F^{2} \cdot E_{n}-D^{2} \cdot S^{2} \tag{6}\\
& =\left[4 E_{m-1}+(m-5) R\right] \cdot E_{n}+\left(m E_{m-1}-R\right) \cdot(n-1) E_{n} \\
& \quad(\text { by (6) (7), (2) and (8)) }) \\
& =\left[(4+m n-m) E_{m-1}\right] \cdot E_{n}+(m-n-4) R \cdot E_{n}
\end{align*}
$$

Therefore, if $n=m-4$,

$$
W W^{\prime}=(m-1)(m-4) E_{m-1} \cdot E_{m-4}=n(n+3) E_{n} \cdot E_{n+3}
$$

and W is an H-matrix.
Since a symmetric H-matrix of order 2 exists and a symmetric H-matrix of order $p^{h}+1 \equiv 0 \bmod 4$, where p is a prime, exists [3, p. 67], there exists a symmetric H-matrix of order n where n is a product of factors of types (a) and (b). We have therefore proved the theorem:

Theorem 1. If n and $n+4$ are both products of factors of types (a) and (b) there exists an H-matrix of order $n(n+3)$.

As a particular case of this theorem we have the corollary:
Corollary 1. If $n-1$ and $n+3$ are both powers of primes and are congruent to 3 modulo 4 , there exists an H-matrix of order $n(n+3)$.

If $m=p^{h}+1 \equiv 2 \bmod 4$, where p is a prime, there exists [$3, \mathrm{p} .66$] a symmetric matrix T of order m, each diagonal element of which has the value 0 and each other element the value ± 1 and such that

$$
T=\left(\begin{array}{cc}
0 & e \\
e^{\prime} & U
\end{array}\right)
$$

and

$$
\begin{equation*}
T^{2}=(m-1) E_{m} \tag{9}
\end{equation*}
$$

It follows therefore that

$$
\begin{equation*}
U U^{\prime}=U^{2}=(m-1) E_{m-1}-R \tag{10}
\end{equation*}
$$

where R is defined by (3). Let A_{1} and B_{1} be two H-matrices of order n_{1} such that [3, p. 66]

$$
\begin{equation*}
A_{1} B_{1}^{\prime}=-B_{1} A_{1}^{\prime} \tag{11}
\end{equation*}
$$

and let $\mathrm{K}=A_{1} \cdot E_{m-1}+B_{1} \cdot U$. Then each element of K has the value ± 1 and

$$
\begin{align*}
\mathrm{KK}^{\prime} & =A_{1} A_{1}^{\prime} \cdot E_{m-1}+B_{1} B_{1}^{\prime} \cdot U^{2} \tag{12}\\
& =n_{1} E_{n_{1}} \cdot\left(m E_{m-1}-R\right) \tag{11}
\end{align*}
$$

(by (10)).
Since $e U=0=U e^{\prime}$,

$$
\begin{equation*}
R U=U R=0 \tag{13}
\end{equation*}
$$

Hence, if $\Gamma=A_{1} \cdot R$,

$$
\begin{equation*}
\Gamma \Gamma^{\prime}=n_{1} E_{n_{1}} \cdot(m-1) R \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma \mathrm{K}^{\prime}=A_{1} A_{\mathrm{i}}^{\prime} \cdot R=\mathrm{K} \Gamma^{\prime} \tag{15}
\end{equation*}
$$

Finally, if A_{2} and B_{2} are two H-matrices of order n_{2} satisfying

$$
\begin{equation*}
A_{2} B_{2}^{\prime}=-B_{2} A_{2}^{\prime} \tag{16}
\end{equation*}
$$

and

$$
\begin{array}{rlr}
W & =A_{2} \cdot \Gamma \cdot E_{m}+B_{2} \cdot \mathrm{~K} \cdot T, \\
W W^{\prime} & =A_{2} A_{2}^{\prime} \cdot \Gamma \Gamma^{\prime} \cdot E_{m}+B_{2} B_{2}^{\prime} \cdot \mathrm{KK}^{\prime} \cdot T^{2} & \quad \text { (by (15) and (16)) } \\
& =n_{2} E_{n_{2}} \cdot n_{1} E_{n_{1}} \cdot\left[(m-1) R+\left(m E_{m-1}-R\right)(m-1)\right] \cdot E_{m} \\
& & (\text { by }(9),(12) \text { and (14)) } \\
& =r E_{r} & \left(r=n_{1} n_{2} m(m-1)\right) .
\end{array}
$$

Therefore W is an H-matrix and we have proved the theorem:
Theorem 2. If H-matrices of orders n_{1} and n_{2} exist, $n_{1}>1, n_{2}>1$, and p is a prime such that $p^{h}+1 \equiv 2 \bmod 4$, there exists an H-matrix of order $n_{1} n_{2} p^{h}\left(p^{h}+1\right)$.

Since, if p is a prime such that $p^{h}+1 \equiv 0 \bmod 4$, there exists an H-matrix of order $p^{h}\left(p^{h}+1\right)$, we have the corollary:

Corollary 1. If H-matrices exist of orders $n_{1}>1$ and $n_{2}>1$, there exists an H-matrix of order $n_{1} n_{2}\left(p^{h}+1\right) p^{h}$ where p is an odd prime.

Since an H-matrix of order 2 exists we have the corollary:
Corollary 2. If p is an odd prime an H-matrix exists of order $4 p^{h}\left(p^{h}+1\right)$.

In the proof of the final theorem we require the following lemma:
Lemma 1. If there exists an H-matrix A of order $n>1$, there exist two H-matrices B and C of order n such that $A B^{\prime}=-B A^{\prime}, A C^{\prime}=C A^{\prime}$, $B C^{\prime}=C B^{\prime}$.

In fact the matrices $B=X A$ and $C=Y A$, where X is the diagonal block matrix

$$
\left[\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \cdots,\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right]
$$

and Y is the diagonal block matrix

$$
\left[\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \cdots,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right]
$$

satisfy the conditions of the lemma. For $B B^{\prime}=C C^{\prime}=n E_{n}, A B^{\prime}=n X^{\prime}$ $=-n X=-B A^{\prime}, \quad C A^{\prime}=n Y^{\prime}=n Y=C A^{\prime}$ and $B C^{\prime}=n X Y^{\prime}=n Y X^{\prime}$ $=C B^{\prime}$.

Let $\mathrm{M}=C_{1} \cdot\left(2 E_{m-1}-R\right)$ and $\mathrm{N}=A_{1} \cdot E_{m-1}+B_{1} \cdot U$, where R is defined by (14), U by (10) and A_{1}, B_{1} and C_{1} are matrices of order n_{1} with the properties of Lemma 1. Then each element of the matrices M and N has the value ± 1. Further

$$
\begin{align*}
& \mathrm{MM}^{\prime}=n_{1} E_{n_{1}} \cdot\left(4 E_{m-1}-4 R+R^{2}\right) \\
&=n_{1} E_{n_{1}} \cdot\left[4 E_{m-1}+(m-5) R\right] \tag{17}\\
& \mathrm{NN}^{\prime}=n_{1} E_{n_{1}} \cdot\left(E_{m-1}+U^{2}\right)=n_{1} E_{n_{1}} \cdot\left(m E_{m-1}-R\right) \quad(\text { by }(4)), \tag{18}\\
& \text { (by (10)) }
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{MN}^{\prime} & =C_{1} A_{1}^{\prime} \cdot\left(2 E_{m-1}-R\right)+C_{1} B_{1}^{\prime} \cdot\left(2 E_{m-1}-R\right) U \\
& =C_{1} A_{1}^{\prime} \cdot\left(2 E_{m-1}-R\right)+C_{1} B_{1}^{\prime} \cdot 2 U \tag{13}
\end{align*}
$$

Therefore by Lemma 1

$$
\begin{equation*}
\mathrm{MN}^{\prime}=\mathrm{NM}^{\prime} \tag{19}
\end{equation*}
$$

Let A_{2} and B_{2} be two H-matrices of order $n_{2}>1$ satisfying (16) and let $n=p^{h}+1 \equiv 2 \bmod 4$ where p is a prime. Then there exists a matrix G of order n and of the same form as T in (9) and satisfying

$$
\begin{equation*}
G^{2}=(n-1) E_{n} \tag{20}
\end{equation*}
$$

If finally $W=A_{2} \cdot \mathrm{M} \cdot E_{n}+B_{2} \cdot \mathrm{~N} \cdot G$, each element of W has the value ± 1 and

$$
\begin{aligned}
W W^{\prime}= & n_{2} E_{n_{2}} \cdot\left(\mathrm{MM}^{\prime} \cdot E_{n}+\mathrm{NN}^{\prime} \cdot G^{2}\right) \quad \text { (by (16) and (19)) } \\
= & n_{1} n_{2} E_{n_{1} n_{2}} \cdot\left[4 E_{m-1}+(m-5) R\right] \cdot E_{n} \\
& +\left(m E_{m-1}-R\right) \cdot(n-1) E_{n} \quad \quad \text { (by (17), (18) and (20))) } \\
= & n_{1} n_{2} E_{n_{1} n_{2}} \cdot\left[(4+m n-m) E_{m-1}+(m-4-n) R\right] \cdot E_{n} .
\end{aligned}
$$

Hence, if $m=n+4$ and $r=n_{1} n_{2} n(n+3)=n_{1} n_{2}(m-1)(m-4)$,

$$
W W^{\prime}=r E_{r}
$$

and W is an H-matrix. We have therefore proved the theorem:
ThEOREM 3. If n and $n+4$ are both of the form $p^{h}+1 \equiv 2 \bmod 4$ where p is a prime and if H-matrices of orders $n_{1}>1$ and $n_{2}>1$ both exist, there exists an H-matrix of order $n_{1} n_{2} n(n+3)$.

As a consequence of Theorem 1 we have the corollary:
Corollary 1. If n and $n+4$ are both of the form $p^{h}+1$ where p is an odd prime and if H-matrices of orders $n_{1}>1$ and $n_{2}>1$ both exist, there exists an H-matrix of order $n_{1} n_{2} n(n+3)$.

Since an H-matrix of order 2 exists we also have the corollary:
Corollary 2. If n and $n+4$ are both of the form $p^{h}+1$, where p is an odd prime, there exists an H-matrix of order $4 n(n+3)$.

Particular examples. That the above theorems do actually increase the values of n as orders of H-matrices which are known to exist is shown by the following examples.

By Theorem 1 an H-matrix of order (56)(59) exists. For $56=2\left(3^{3}+1\right)$ and 59 is prime. Further no one of (56)(59), (28)(59), (14)(59), 4(59) or $2(59)$ is of the form $p^{h}+1$. Therefore (56)(59) is not a product of factors of types (a), (b) or (c). By Theorem 2 an H-matrix of order $4(73)(74)$ exists and by Theorem 3 an H-matrix of order $4(230)(233)$ exists. Neither of the numbers $4(73)(74)$ nor $4(230)(233)$ is a product of factors of types (a), (b), (c) and (d).

References

1. Jacques Hadamard, Resolution d'une question relative aux dêterminants, Bull. Sci. Math. (2) vol. 17 (1893) pp. 240-246.
2. R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics, Massachusetts Institute of Technology, vol. 12 (1933) pp. 311-320.
3. John Williamson, Hadamard's determinant theorem and the sum of four squares, Duke Math. J. vol. 11 (1944) pp. 65-81.

Queens College

