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Introduction. We shall call a square matrix A of order n an Hada-
mard matrix or for brevity an iî-matrix, if each element of A has the 
value ± 1 and if the determinant of A has the maximum possible 
value wn/2. It is known that such a matrix A is an iï-matrix [ l]1 if, 
and only if, AA'~nEn where Af is the transpose of A and En is the 
unit matrix of order n. It is also known that, if an iï-matrix of order 
n > 1 exists, n must have the value 2 or be divisible by 4. The existence 
of an iî-matrix of order n has been proved [2,3] only for the following 
values of n>\\ (a) w = 2, (b) w = £*+ls~0 mod 4, p a prime, (c) n 
— m(ph-\-l) where m ^ 2 is the order of an ü-matrix and p is a prime, 
(d) n = q(q — l) where q is a product of factors of types (a) and (b), (e) 
n = 172 and for n a product of any number of factors of types (a), (b), 
(c), (d) and (e). 

In this note we shall show that an iï-matrix of order n also exists 
when (f) n — q(q+3) where q and g+4 are both products of factors of 
types (a) and (b), (g) n = nin2(ph+l)ph, where Wi>l and w2>l are 
orders of i7-matrices and p is an odd prime, and (h) n — nin2in(tn+3) 
where Wi>l and W2>1 are orders of jff-matrices and m and ra+4 are 
both of the form ph + l, p an odd prime. 

It is interesting to note the presence of the factors tii and w2 in the 
types (g) and (h) and their absence in the types (d) and (f).Thus, 
if p is a prime and £*+ls=0 mod 4, an iJ-matrix of order ph(ph+l) 
exists but, if ph + l =2 mod 4, we can only be sure of the existence of 
an iJ-matrix of order nitt2ph(ph+l) where tii>l and ti2>l are orders 
of iï-matrices. This is analogous to the simpler result that, iî ph + 1^0 
mod 4 an ü-matrix of order ph + l exists but, if ph+lz=2 mod 4, we 
can only be sure of the existence of an i?-matrix of order n(ph+l) 
where n > 1 is the order of an iï-matrix. 

We shall denote the direct product of two matrices A and B by 
A - B and the unit matrix of order n by Ew. 

Theorems on the existence of iï-matrices. If a symmetric ü-matrix 
of order m>\ exists, there exists an iï-matrix H of order m with the 
form 
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where e is the row vector (1, 1, • • • , 1) of dimension m — 1 and e' the 
column vector which is the transpose of e. Since H is a symmetric 
iï-matrix 

ff2 - HH' - mEm 

and accordingly 

/ w e + eD \ /m 0 \ 

V + De' e'e + JDV " \0 mEm-i)' 

Therefore 

(1) eD - - e, De' - - e' 

and 

(2) D2 = mEm-i - R, 

where 

(3) JR = e'e 

and R is the square matrix of order m — 1 each element of which has 
the value 1. It follows easily that 

(4) R2 « O - l)tf 

and by (1) and (3) that 

(5) RD = - £ = Z)£. 

If 7? = 2Ew_i — iî, JF is a symmetric matrix each element of which has 
the value ± 1 . Further 

(6) FD - DF 

by (5) and 

(7) F2 - 4£m_x + (m - 5)* 

by (4). If n is a product of factors of types (a) and (b) there exists 
[3, p. 67] an iî-matrix of order n with the form En+S where S is 
skew-symmetric so that 

(8) S2 - - (» - l)En. 

If 

each element of W has the value ± 1 and 
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WW' - (F-En + D>S)(F-En - DS) 

« = F 2 - £ n - 2 > 2 - 5 2 (by (6)) 

- [4E«_i + (in ~ 5 ) J R ] - E * + («E—i - * ) • (» - 1)EW 

(by (7), (2) and (8)) 

- [(4 + mn - m)Em^]'En + (m - n - 4)REn. 

Therefore, if w = w — 4, 

WW1 « (m - l)(m - 4 ) £ m _ 1 - £ ^ 4 = n(» + 3 )£ n -£ n + 8 

and PF is an ü-matr ix . 
Since a symmetric ü-matr ix of order 2 exists and a symmetric 

i ï-matrix of order £*+l==0 mod 4, where p is a prime, exists [3, 
p. 67], there exists a symmetric iJ-matrix of order n where n is a 
product of factors of types (a) and (b). We have therefore proved the 
theorem : 

THEOREM 1. If n and w + 4 are both products of factors of types (a) 
and (b) there exists an H-matrix of order n(n+3). 

As a particular case of this theorem we have the corollary: 

COROLLARY 1. If n — 1 and n+3 are both powers of primes and are 
congruent to 3 modulo 4, there exists an H-matrix of order n(n+3). 

If m=ph+i^2 mod 4, where p is a prime, there exists [3, p. 66] 
a symmetric matrix T of order m, each diagonal element of which has 
the value 0 and each other element the value ± 1 and such that 

' - C J) 
and 

(9) r 2 « (m - l)Em. 

I t follows therefore that 

(10) UU' = U2 = («i - l)Ew_i - £ , 

where J? is defined by (3). Let -4i and 5 i be two i7-matrices of order 
n\ such that [3, p. 66] 

(11) AxBl - - BxAl 

and let K=i4i«iSm_i+J3i- £/. Then each element of K has the value 
± l a n d 
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KK' ~AM -£m - i + BxBl. V* (by (11)) 
(12) 

- nxEni• (mEm^ - R) (by (10)). 

Sinceé?£/ = 0=£ /e ' , 

(13) RU = UR = 0. 

Hence, if r = - 4 i - i ? , 

(14) I T ' - nxEnx\m - 1)2? (by (4)) 

and 

(15) TK' - AiA{ • JJ - KT' (by (13)). 

Finally, if A2 and B2 are two ü-matrices of order n2 satisfying 

(16) AM - - BM, 

and 

W = A2-TEm + B2KT, 

WW' = A%Ai I T ' £ m + B2Bj KK'- T2 (by (15) and (16)) 

= n2En2-mEni- [{m - 1)R + (mEm^ - R)(tn - 1)]-Em 

(by (9), (12) and (14)) 

= rEr (r = n\n2m{m — 1)). 

Therefore W is an iJ-matrix and we have proved the theorem : 

THEOREM 2. If H-matrices of orders nx and n2 exist, n\ > 1, n2 > 1, and 
pis a prime such that ph+i^2 mod 4, there exists an H-matrix of order 
nin2p

h(ph+\). 

Since, if p is a prime such that ^ + 1 = 0 mod 4, there exists an 
H-matrix of order ph(ph+l), we have the corollary: 

COROLLARY 1. If H-matrices exist of orders ni>l and n2>l, there 
exists an H-matrix of order nin2(p

h+l)ph where p is an odd prime. 

Since an i ï-matrix of order 2 exists we have the corollary: 

COROLLARY 2. If p is an odd prime an H-matrix exists of order 
4cph(ph+l). 

In the proof of the final theorem we require the following lemma: 

LEMMA 1. If there exists an H-matrix A of order w > l , there exist 
two H-matrices B and C of order n such that AB'' = — BA', AC' = CA', 
BC'^CB'. 
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In fact the matrices B — XA and C= YA% where X is the diagonal 
block matrix 

[ ( - ÎO . ( - ÎD - - ( - :D ] 
and Y is the diagonal block matrix 

[O.CD--0]. 
satisfy the conditions of the lemma. For BB''=>CC'' — nEn, AB' = nX' 
= -nX=-BA', CA' = nY' = nY=CA' and BC'=nXY' = nYX' 
= CB'. 

Let M = Ci(2£m_!-i?) and N=4i-JE«_i+23i- U, where 2? is de
fined by (14), U by (10) and Ai, B\ and Ci are matrices of order wi 
with the properties of Lemma 1. Then each element of the matrices 
M and N has the value ± 1 . Further 

MM' = niEni • (4£m_! - 4R + R*) 

= mEni- [4E^i + (m- 5)R] (by (4)), 

(18) NN' - »,£„,.(£»_! + U*) - »!£»,•(«£_! - 22) (by (10)) 

and 

MN' = CM •(2£m_i - 2?) + CiB{-(2Em^ - R)U 

- di l i ' • (2£m_! - 2*) + d B / -217 (by (13)). 

Therefore by Lemma 1 

(19) MN' = NM'. 

Let Ai and 232 be two H-matrices of order «2>1 satisfying (16) and 
let n = ph+1 =2 mod 4 where p is a prime. Then there exists a matrix 
G of order « and of the same form as T in (9) and satisfying 

(20) G2 = (« - 1)£B. 

If finally PF=/l2-M-2Zn+23rN-G, each element of W has the value 
± l a n d 

WW' = «22V(MM'£„ + NN'G8) (by (16) and (19)) 

- nw2Enint- [4£m_i + (» - 5)2?]•£„ 

+ («*£„_! - 2?) • (» - l)En (by (17), (18) and (20)) 

= »i«2iSB1„,- [(4 + ww — m)Em-i + (m — 4 — ra)2?]-£„. 
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Hence, if m = w + 4 and r = wi»2w(w+3) =«iW2(m — l)(w —4), 

WW' - r £ r 

and W is an iï-matrix. We have therefore proved the theorem : 

THEOREM 3. If n and w + 4 are both of the form £ * + l = 2 mod 4 
where p is a prime and if H-matrices of orders n\> 1 and n%>\ both 
exist, there exists an H-matrix of order #iW2«(w+3). 

As a consequence of Theorem 1 we have the corollary : 

COROLLARY l.Ifn and n+& are both of the form ph+l where p is an 
odd prime and if H-matrices of orders n\>\ and w2> 1 both exist, there 
exists an H-matrix of order wiW2w(w+3). 

Since an ü-matr ix of order 2 exists we also have the corollary: 

COROLLARY 2. If n and n+4 are both of the form £ * + l , where p is 
an odd prime, there exists an H-matrix of order 4w(w+3). 

Particular examples. Tha t the above theorems do actually increase 
the values of n as orders of iï-matrices which are known to exist is 
shown by the following examples. 

By Theorem 1 an i î-matrix of order (56) (59) exists. For 56 = 2(38 + l) 
and 59 is prime. Further no one of (56)(59), (28)(59), (14)(59), 4(59) 
or 2(59) is of the form £ * + l . Therefore (56)(59) is not a product of 
factors of types (a), (b) or (c). By Theorem 2 an H-matrix of order 
4(73) (74) exists and by Theorem 3 an ü-mat r ix of order 4(230) (233) 
exists. Neither of the numbers 4(73) (74) nor 4(230) (233) is a product 
of factors of types (a), (b), (c) and (d). 
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