
LATTICES OF CONTINUOUS FUNCTIONS 

IRVING KAPLANSKY 

1. Introduction. Let X be a compact (=bicompact) Hausdorff 
space and C(X) the set of real continuous functions on X. By defining 
addition and multiplication pointwise, we convert C(X) into a ring. 
With the norm ||/|| = sup |jf(#)|, C{X) becomes a Banach space. 
Finally, we may introduce an ordering by defining f^g to mean 
f(x)^g(x) for all x; this makes C(X) a lattice. 

Gelfand and Kolmogoroff [6]1 showed that, as a ring alone, C(X) 
characterizes X. More precisely, if C{X) and C(Y) are isomorphic 
rings, then X and Y are homeomorphic. Banach [3, p. 170] proved 
that C(X) as a Banach space characterizes X, if X is compact metric. 
Stone [5, p. 469] generalized this to any compact Hausdorff space, 
and Eilenberg [5] and Arens and Kelley [2] have since given other 
proofs. Finally, Stone [9] has shown that as a lattice-ordered group, 
C(X) characterizes X. A negative result is that C{X) as a topological 
linear space fails to characterize X [3, p. 184]. 

In this paper we shall prove the following result: as a lattice alone 
C(X) characterizes X, This theorem is shown in §5 to subsume all 
the earlier results cited above. Moreover in this context we can re­
place the reals by an arbitrary chain, granted a suitable separation 
axiom. In §4 it is shown that the connectedness of X is equivalent 
to the indecomposability of C(X) as a lattice. 

I am greatly indebted to Professor A. N. Milgram for suggestions 
which led to a substantial simplification of my proof of Theorem 1. 

2. Main theorem. Let R be a chain (simply ordered set). Until §6 
it will be assumed that R has neither a minimal nor maximal element. 
There is a natural way of topologizing R [4, p. 27] which can be de­
scribed as follows: for any <x£.JR let U(a) be the set of all j3£2? with 
j8 > a , L(a) the set of all /3 with /3 <a; then the U's and Us form a sub-
base of the open sets. 

LEMMA 1. If a> j3£i? anda>P, then there exist neighborhoods M, N of 
a, /3 such that y > S for all yÇïM, ô£iV. 

PROOF. If there exists £ with a > £ » 3 we take M « £/(£), JV«L({). If 
not, we take M = U(fi), N=*L(a). 

Received by the editors January 2, 1947. 
1 Numbers in brackets refer to the bibliography at the end of the paper. 
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Let X be a topological space and C = C(X) the set of all continuous 
functions from X to R. We order C by defining ƒ ̂  g to mean ƒ (x) ^ g(x) 
for all # £ X . Then C becomes a lattice, and in fact a distributive lat­
tice. 

DEFINITION. X is R-separated if for any x, y G X (x 9^y) and ce, jSEP 
there exists a continuous function ƒ with ƒ(x) =ce, /(y) =j8. X is R-nor-
mal, if for any disjoint closed sets P, GQX and any a, /3E-K there 
exists a continuous function ƒ equal to a on F and /3 on G. 

Any i?-separated space is necessarily a Hausdorfï space. If R is the 
real number system, it is known that conversely any compact Haus­
dorfï space is P-normal, and this is likewise true if R is the set of 
reals with ± oo adjoined (the latter is the same as a bounded closed 
interval on the real line). If R is disconnected, it is clear that X must 
be totally disconnected if it is to be P-separated, and conversely a 
totally disconnected space is i?-separated for every R. In the extreme 
case where R consists of two elements, C(X) is a Boolean algebra in 
its natural ordering, and the results in this paper are subsumed in 
Stone's theory of Boolean spaces and rings [7]. 

For any R we have the following result, which can be proved in 
exactly the same way as the lemma on p. 487 of [ l ] . 

LEMMA 2. Suppose R has neither a maximal nor minimal element. 
Then if X is compact and R-separated, it is R-normaL 

By a prime ideal P in C [4, p. 78] we mean the set of antecedents 
of 0 in some lattice homomorphism of C onto the two-element lattice 
(0, I). A prime ideal P is a sublattice containing with any element all 
smaller ones, and its complement C — P has the dual property. 

We can construct prime ideals in C as follows. Let Z be the lower 
half of a Dedekind cut in i?, and for a fixed point x £ X , let P consist 
of all ƒ with f(x) (EZ. Such prime ideals can be characterized as fol­
lows: ƒG-P and g{x) èf(x) imply g£-P. We shall see below (§3) that 
these do not in general exhaust all prime ideals. However, we can 
prove a certain weakened version of this property. 

DEFINITION. A prime ideal P in C is associated with a point x(~X 
iif&P and g(x) <f(x) imply g £ P . 

LEMMA 3. If X is compact, then any prime ideal P in C is associated 
with some point If X is R-separated, the point is unique. 

PROOF. Suppose P is associated with no point of X. Then for every 
XÇLX we have functions/, g with g{x) <f{x) a n d / ( E P , gÇzQ = C—P. 
By Lemma 1 the inequality g <f extends to a neighborhood of x. A 
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finite number of these neighborhoods cover X. Let / i , • • • , fn and 
gu • • • jgn be the corresponding functions, and define h = / i U • • -U/ n , 
k = giC\ • • • C\gn. Then h>k, but hÇzPy ftGQ, a contradiction. 

Suppose now that X is i?-separated and that P is associated with 
both x and x'. Let m, n be any functions in P , Q respectively. There 
exists a function r with r(x) <m(x), r(xf) >n(x'). But these inequali­
ties require r to be in both P and Q. 

LEMMA 4. If two prime ideals in C are associated with the same point 
of X, then their intersection contains a prime ideal. 

PROOF. Suppose P and P' are both associated with x. Let / G P , 
g<EP' and take any a £ P smaller than both ƒ(x) and g(x). Let P " be 
the set of all h with ft (a) <La\ then PnCPC\Pf. 

LEMMA 5. Suppose X is compact and R-separated. Let P , P ' , P " be 
prime ideals in C with P " C P ^ P ' . Then P and P ' are associated with 
the same point. 

PROOF. Suppose on the contrary that P and P' are associated with 
distinct points x and y. Let P " be associated with z, where z is for 
definiteness different from x. Choose any ƒ in P " , g in C — Py and 
then h with ft(z) <f(z), h(x) >g(x). Then ft is in P " but not in P , a con­
tradiction. 

For use in §4 we insert at this point the following result. 

LEMMA 6. Suppose X is compact. If P is a prime ideal associated 
with x, ƒ G P , and g ̂ f on an open and closed set U containing x, then 
gGP. 

PROOF. Suppose gGQ == C—P. We note that P cannot be associated 
with a point y in the complement V of U, for we can construct a func­
tion m with m{x) <ƒ(#), m(y) >g(y) and obtain a contradiction. Hence 
at every ySV we have functions ft, k with h>k in a neighborhood 
of 3> and hÇ^P, ft Go- A finite number of neighborhoods cover the com­
pact space F ; if fti, • • • , ftn, fti, • • • , kn axe the corresponding func­
tions we have fKJhAJ • • • \Jhn in P but exceeding gC\kiC\ • • • Ptftn 

in(X 

LEMMA 7. Suppose X is compact and R-separated. Let f o be a fixed 
function in C, and for any subset S of X define A (S) to be the intersection 
of all prime ideals containing / 0 which are associated with points of S. 
Then a point x is in the closure of S if and only if A (S) is contained in 
a prime ideal associated with x. 

PROOF. Suppose x is in the closure of S. Choose a >/o(#) and let P 
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consist of all ƒ with ƒ(x) i^a. Now g&A(S) implies g^fo at all points 
of S and hence g(x) g/o(x). I t follows that A(S)(ZP- (For later use 
we remark that this half of the proof did not use i?-separation.) 

Suppose x is not in the closure of S. Then A (S) cannot be contained 
in any prime ideal P associated with x. For let ƒ be any function in 
C — P and let a G R be chosen with fo>a on 5. By Lemma 2, a contin­
uous function g exists which equals a o n 5 and exceeds ƒ at x. Then g 
is in A (S) but not in P , a contradiction. 

We can now prove our principal theorem. 

THEOREM 1. Let R be a chain with neither a minimal nor maximal 
element, and let it be endowed with its order topology. Let X be a compact 
R-separated space, and C the set of continuous functions from X to R. 
Then as a lattice, C characterizes X. 

PROOF. We say that two prime ideals in C are equivalent if their 
intersection contains a third prime ideal. Lemmas 3, 4, and 5 show 
that there is a one-one correspondence between points of X and 
classes of equivalent prime ideals. Lemma 7 shows that the topology 
of X can be expressed in terms of inclusion relations among the prime 
ideals, and this completes the proof. 

3. An example. We shall give an example to show that not all prime 
ideals in C are simply based on a point in X and a Dedekind cut in R. 

Let R be the reals, X the unit interval [0, l ] . Let A be the set of 
f unctions ƒ f or which ƒ (x) ^ — x in a neighborhood of 0 (the neighbor­
hood depending on ƒ). A is an ideal in C, that is, a sublattice contain­
ing with any element all smaller ones. Similarly let B be the set of all 
g with g(x) ^x in a neighborhood of 0; B is a dual ideal disjoint from 
A. By [8, Theorem 6] we can expand A, B to a prime ideal P and its 
complementary dual prime ideal Q. All functions ƒ with ƒ (0) < 0 go into 
P , all with ƒ (0) > 0 go into Q, but those vanishing at 0 are split be­
tween P and Q. 

Examples of this type can be constructed provided neither X nor 
R is discrete. They apparently require the axiom of choice. 

4. Connectedness and direct products. If the space X splits into 
two open and closed sets X\ and X2, it is evident that the lattice 
C~C(X) is the direct product [4, p. 13] of the lattices C(X\) and 
C(X2). We shall now prove the less trivial converse. 

THEOREM 2. Let R be a chain with neither a maximal nor minimal 
element, and let it be endowed with its order topology. Let X be a compact 
space and C = C(X) the lattice of all continuous functions from X to R. 



1947] LATTICES OF CONTINUOUS FUNCTIONS 621 

Suppose C is a direct product of lattices, C = G X G - Then X splits into 
two open and closed sets Xi, X2 in such a fashion that G==C(X»). 

PROOF. We first remark that any prime ideal P in C is of the form 
P\ X G or C1XP2, where Pi is a prime ideal in G. This follows readily 
from Theorem 10 of [8], or it can be proved by repeating the argu­
ment of Lemma 3, if we replace X by a two-point space and R by G 
at one point and G at the other. Let us write Z\ for the class of prime 
ideals of the form P i X G , Z2 for those of the form GXP2 . 

Now take any point x in X and any prime ideal P associated with 
it. We define Xi to be the set of those x for which PÇ_Zi* I t follows 
from Lemma 4 that this definition makes sense, since any two prime 
ideals associated with the same point must fall into the same class. 

Next we show tha t Xi is closed. If not, there is a point yÇ.X2 which 
is in the closure of Xi. By the first half of Lemma 7, A(X\) is con­
tained in a prime ideal P associated with y. But P is of the form 
C1XP2 while A(Xi) is of the form 5 X C 2 , so this is impossible. Simi­
larly, X2 is closed, and each is thus open and closed. 

We shall now set up a lattice isomorphism between G and C(Xi). 
Given £ iGG, we pair it with any c2 in G, obtaining a function ƒ G G 
whose specialization to Xi we shall call / i . We prove that the corre­
spondence is order-preserving, which incidentally shows it to be well 
defined. Suppose we have d i G G with di^ci and that d\ has given rise 
to the function g on X specializing to g± on X\. If gi(x) >fi(x) a t some 
point x £ I i , we can build a prime ideal P associated with x such that 
fe.Pf gGC-P. But P is of the form P i X G and h e n c e / G P implies 
gÇzPj since the G-component of ƒ exceeds that of g. This contradic­
tion shows t h a t / i ^ g i , as desired. 

To set up the correspondence the other way we take a function jfi 
on Xi, pair it with any f2 on X2, to obtain a f unction ƒ whose G-com­
ponent is, say, ci. Suppose g i g / i and that g\ gives rise to d i G G . We 
assert tha t d\^c\. For if not, we note that G is a distributive lattice, 
whence [4, Theorem 5.8] there exists a prime ideal P i C G with 
C1GP1, d i G G — Pi . For the corresponding prime ideal P = P i X G we 
have JÇZP, g(£C — P. But P is associated with a point in Xr, by 
Lemma 6 we have a contradiction. 

There remains the trivial observation that the two correspondences 
we have defined are inverse to each other, and we have completed the 
proof of Theorem 2. 

Remark. I t is to be observed that no separation axiom is required 
for Theorem 2. In case R is the reals, we can even drop the assumption 
of compactness by making use of the Stone-Cech compactification 
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j8(X). (Cf. [5, p. 578].) But for the general case no such device is 
available, and the validity of Theorem 2 for non-compact spaces re­
mains undecided. 

5. Rings and Banach spaces. Suppose we are given C(X) as the ring 
of real continuous functions. Now ƒ ^g is equivalent to the statement 
that ƒ—g is a square. Hence we are also given the lattice; the lattice 
characterization subsumes the ring characterization. 

Suppose we are given C(X) as a Banach space, with X a compact 
Hausdorff space. Let e be an extreme point on the unit sphere, that 
is, a point which is not an interior point of a segment lying in the 
unit sphere. I t is easy to see that e can assume only the values 1 and 
— 1 ; suppose it is 1 on Fi and — 1 on F2, where Fi, F2 are open and 
closed disjoint sets whose sum is X. Now a function ƒ 5^0 which satis­
fies | | / / | | / | | — e\\ ^ 1 must be non-negative on Y\ and non-positive on F2. 
Hence if we write ƒ è 0 whenever it fulfills this condition, we preserve 
order on Fi and invert order on F2, as compared with the natural 
order in C(X). This gives us a lattice which is at any rate isomorphic 
to C(X). Hence C{X) as a Banach space determines C{X) as a lattice, 
and the lattice characterization subsumes the Banach space charac­
terization. 

Finally we remark tha t in our Theorem 2 we have likewise sub­
sumed the analogous ring and Banach space theorems, in the follow­
ing strong sense : if we have C(X) expressed as a direct sum of rings 
or Banach spaces, then that very decomposition expresses the lattice 
as a direct product (it being understood in the Banach space case 
tha t the lattice being decomposed is the one obtained after inversion 
of order on F2). We omit the straightforward proof of this fact. 

6. Chains with 0 and 7. If R is a chain which has a minimal or 
maximal element or both, Theorems 1 and 2 remain valid, with the 
proviso that jR-separation in the hypothesis of Theorem 1 is replaced 
by i?-normality. In several of the proofs, however, there occur techni­
cal complications. We have preferred to avoid these complications, 
which add nothing to the fundamental idea. We shall merely men­
tion the two main modifications that are necessary: (1) The definition 
of "equivalence" of prime ideals is revised to read: either their inter­
section contains a prime ideal, or the intersection of their comple­
ments contains a dual prime ideal. (2) In the characterization of the 
topology, x is in the closure of 5 if and only if A (5) is contained in a 
prime ideal, or the object dual to A(S) is contained in a dual prime 
ideal. 
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RICHARD ARENS 

1. Introduction^We present a generalization of the familiar theo­
rem of Frobenius that any finite-dimensional linear division algebra 
A over the real number field is isomorphic to the real, the complex, 
or the quaternion number system. The generalization consists in re­
placing the hypothesis of finite dimensionality of A by the weaker 
hypothesis that A be a complete linear space with a topology in which 
multiplication is continuous and which is based on a countable system 
of convex open sets. 

Previous generalizations of Frobenius , theorem have been indicated 
or proved by S. Mazur [ó],1 G. Silov [8], and I. Gelfand [4]. These 
writers have generally assumed that A have a norm ; and only that 
case has been adequately considered in which scalar multiplication by 
complex numbers is assumed. We shall give the proof of the general 
case without limiting ourselves to the commutative case or to com­
plex scalars. 
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