CONGRUENCE PROPERTIES OF RAMANUJAN'S FUNCTION $\tau(n)$

R. P. BAMBAH and S. CHOWLA

Introduction. With Ramanujan we define $\tau(n)$ by

$$\sum_{1}^{\infty} \tau(n) x^{n} = x \prod_{1}^{\infty} (1 - x^{n})^{24} \qquad (|x| < 1).$$

Write $\sigma_k(n)$ for the sum of the kth powers of the divisors of n; $\sigma(n) = \sigma_1(n)$. It is known that

$$\tau(n) \equiv n\sigma(n) \pmod{5},$$

 $\tau(n) \equiv \sigma(n) \pmod{3}$ if $(n, 3) = 1.$

The object of this note is to give proofs of the much stronger results:

(A)
$$\tau(n) \equiv 5n^2\sigma_7(n) - 4n\sigma_9(n) \pmod{5^8}$$

when n is prime to 5;

(B)
$$\tau(n) \equiv (n^2 + k)\sigma_7(n) \pmod{3^4}$$

when n is prime to 3 and where k=0 if n=1(3), k=9 if n=2(3).

1. Some lemmas.

LEMMA 1. We have

$$\sum u\sigma_3(u)\sigma_5(v) \equiv \sum \sigma(u)\sigma(v) - P(n) \pmod{5}$$

where

$$P(n) = \sum_{u \equiv 0 \, (\text{mod } b)} \sigma(u) \sigma(v)$$

where u+v=n; $u, v \ge 1$ in all three sums (\sum) .

Proof. We have

(1)
$$u\sigma_3(u)\sigma_5(v) \equiv 0 \pmod{5}$$
 when $u \equiv 0(5)$;

when (u, 5) = 1 we have

Received by the editors April 7, 1947.

¹ The first of these is proved in Hardy's Ramanujan (Cambridge, 1940); the second by Gupta in J. Indian Math. Soc. vol. 9 (1945) pp. 59-60. In what follows we refer to Ramanujan's Collected papers (Cambridge, 1927) by the letters RCP. We have also proved that $\tau(n) \equiv \sigma_{11}(n) \pmod{2^8}$ if n is odd; this result has been accepted for publication in J. London Math. Soc.

$$u\sigma_3(u) = u \sum_{d|u} d^3 \equiv u \sum_{d|u} d^{-1} = \sum_{d|u} \frac{u}{d} = \sigma(u),$$

so that

(2)
$$u\sigma_3(u) \equiv \sigma(u) \pmod{5}$$
 when $(u, 5) = 1$.

Similarly

(3)
$$\sigma_5(v) \equiv \sigma(v) \pmod{5}$$
.

From (1), (2), (3):

$$\sum u\sigma_3(u)\sigma_5(v) \equiv \sum_{(u,5)=1} \sigma(u)\sigma(v) \equiv \sum \sigma(u)\sigma(v) - P(n) \pmod{5}.$$

LEMMA 2. If (n, 5) = 1 we have

$$\sum uv\sigma_3(u)\sigma_3(v) \equiv \sum \sigma(u)\sigma(v) - 2P(n) \pmod{5}$$

where, as in Lemma 1, the conditions

$$u+v=n, u,v\geq 1$$

are understood in every \sum .

PROOF. If u or $v \equiv 0(5)$, $uv\sigma_3(u)\sigma_3(v) \equiv 0(5)$. From this and (1) we get since (n, 5) = 1,

$$\sum uv\sigma_3(u)\sigma_3(v) \equiv \sum_{(u,5)=1,(v,5)=1} \sigma(u)\sigma(v)$$
$$\equiv \sum \sigma(u)\sigma(v) - 2P(n) \pmod{5},$$

the desired result.

2. Proof of (A). Write, for x numerically less than unity,

$$P = 1 - 24 \sum_{1}^{\infty} \sigma(n) x^{n},$$

$$Q = 1 + 240 \sum_{1}^{\infty} \sigma_{3}(n) x^{n},$$

$$R = 1 - 504 \sum_{1}^{\infty} \sigma_{5}(n) x^{n}.$$

Then (44), p. 144 of RCP, is

(4)
$$Q^{3} - R^{2} = 1728 \sum_{n=1}^{\infty} \tau(n) x^{n}$$

and we deduce from relations 5 and 2, Table II, p. 142 of RCP, that

$$1584 \sum_{1}^{\infty} n\sigma_{9}(n) x^{n}$$

$$= 3(Q^{3} - R^{2}) - 5R(PQ - R)$$

$$= 5184 \sum_{1}^{\infty} \tau(n) x^{n} - 5\left(1 - 504 \sum_{1}^{\infty} \sigma_{5}(n) x^{n}\right) (PQ - R)$$

$$= 5184 \sum_{1}^{\infty} \tau(n) x^{n} - 5\left(1 - 504 \sum_{1}^{\infty} \sigma_{5}(n) x^{n}\right) 720 \sum_{1}^{\infty} n\sigma_{3}(n) x^{n}.$$

Comparing coefficients of x^n and using Lemma 1 we have

(5) $1584n\sigma_{9}(n) = 5184\tau(n) - 3600n\sigma_{3}(n) + 5 \cdot 504 \cdot 720 \sum u\sigma_{3}(u)\sigma_{5}(v)$ (where u+v=n $(u, v \ge 1)$ in the \sum sum),

(6)
$$84n\sigma_{9}(n) \equiv 59\tau(n) + 25n\sigma_{3}(n) + 25\sum_{\sigma}\sigma(u)\sigma(v) - 25P(n) \pmod{125}.$$

Again, relations 4, Table III, and 2, Table II, p. 142 of RCP give us

$$8640\sum_{1}^{\infty} n^{2}\sigma_{7}(n)x^{n} = 5(Q^{3} - R^{2}) + 9(PQ - R)^{2}$$

$$= 8640\sum_{1}^{\infty} \tau(n)x^{n} + 9 \cdot 720^{2} \left\{ \sum_{1}^{\infty} n\sigma_{3}(n)x^{n} \right\}^{2}.$$

Comparing the coefficients of x^n here we get

(7)
$$n^2 \sigma_7(n) = \tau(n) + 135 \cdot 4 \sum u \sigma_3(u) v \sigma_3(v)$$

or

(7')
$$15n^2\sigma_7(n) \equiv 15\tau(n) - 25\sum uv\sigma_3(u)\sigma_3(v) \pmod{125}.$$

From (7') and Lemma 2 we get

(8)
$$15n^2\sigma_7(n) \equiv 15\tau(n) - 25\sum \sigma(u)\sigma(v) + 50P(n) \pmod{125}$$
.

Eliminating P(n) from (6) and (8) we get

$$168n\sigma_{\theta}(n) + 15n^{2}\sigma_{7}(n) \equiv 133\tau(n) + 50n\sigma_{8}(n) + 25\sum_{\sigma}\sigma(u)\sigma(v) \pmod{125},$$

or

(9)
$$8\tau(n) \equiv 43n\sigma_{9}(n) + 15n^{2}\sigma_{7}(n) - 50n\sigma_{3}(n) \\ - 25\sum_{n}\sigma(u)\sigma(n) \pmod{125}.$$

Again (relation 1, Table IV, p. 146 of RCP)

(10)
$$\sum \sigma(u)\sigma(v) = \frac{5\sigma_3(n) - 5n\sigma(n)}{12} - \frac{(n-1)\sigma(n)}{12}$$
$$\equiv 2(n-1)\sigma(n) \pmod{5}.$$

From (9) and (10) we obtain

$$8\tau(n) \equiv 43n\sigma_9(n) + 15n^2\sigma_7(n) - 50n\sigma_8(n) - 50(n-1)\sigma(n) \pmod{5^3}.$$

Hence, multiplying by 47,

(11)
$$\tau(n) \equiv 21n\sigma_{9}(n) - 45n^{2}\sigma_{7}(n) + 25n\sigma_{3}(n)$$

$$+ 25(n-1)\sigma(n) \pmod{5^{8}}$$

$$\equiv 5n^{2}\sigma_{7}(n) - 4n\sigma_{9}(n) \pmod{5^{8}}$$

for

$$25n\sigma_{9}(n) - 50n^{2}\sigma_{7}(n) + 25n\sigma_{3}(n) + 25(n-1)\sigma(n)$$

$$= 50\{n\sigma_{9}(n) - n^{2}\sigma_{7}(n)\}$$

$$+ 25n\{\sigma(n) - \sigma_{9}(n)\} + 25\{n\sigma_{3}(n) - \sigma(n)\}$$

$$\equiv 0 \pmod{125},$$

since the terms inside each set of braces are a multiple of 5 provided (n, 5) = 1. Thus (A) is proved by (11).

3. **Proof of (B).** We shall need the following results:

$$\sigma(3t+2) \equiv 0 (3),$$

(13)
$$\sigma_3(3t+2) \equiv 0 \pmod{9}$$

where t is 0 or a positive integer. To prove (13) we observe that to every divisor 3m+1 of 3t+2, there corresponds another 3n+2 = (3t+2)/(3m+1), and

$$(3m+1)^3 + (3n+2)^3 \equiv 0(9);$$

while (12) is proved still more simply. We next prove the following lemma.

LEMMA 3. If $n \equiv 1(3)$, we have

$$\sum uv\sigma_3(u)\sigma_3(v)\equiv 0(3)$$

where (in the summation \sum) u+v=n and $u, v \ge 1$.

PROOF. Since $n \equiv 1(3)$ and u+v=n, we have the 3 cases:

$$u \equiv 0(3),$$
 $v \equiv 1(3),$
 $u \equiv 1(3),$ $v \equiv 0(3),$
 $u \equiv 2(3),$ $v \equiv 2(3),$

so that $uv\sigma_3(u)\sigma_3(v)\equiv 0$ (3) in each case on account of (13). Hence the lemma is proved.

LEMMA 4. If $n \equiv 2(3)$, we have

$$\sum_{u+v=n, u,v \ge 1} uv\sigma_3(u)\sigma_2(v) \equiv \frac{\sigma_7(n) - \sigma_3(n)}{120} \pmod{3}.$$

PROOF. If u+v=n, $n\equiv 2(3)$, we have 3 cases:

$$(i) u \equiv 0(3), v \equiv 2(3),$$

(ii)
$$u \equiv 2(3), \quad v \equiv 0(3),$$

(iii)
$$u \equiv 1(3), \quad v \equiv 1(3).$$

In the first two cases

$$uv\sigma_3(u)\sigma_3(v) \equiv 0 \pmod{3}$$
;

while in the third case

$$uv\sigma_3(u)\sigma_3(v) \equiv \sigma_3(u)\sigma_3(v) \pmod{3}$$
.

Hence we have (in the sums u+v=n; $u, v \ge 1$), using (13),

$$\sum uv\sigma_3(u)\sigma_3(v) \equiv \sum_{u,v\equiv 1(3)} \sigma_3(u)\sigma_3(v) \pmod{3}$$
$$\equiv \sum \sigma_3(u)\sigma_3(v) \equiv \frac{\sigma_7(n) - \sigma_3(n)}{120} \pmod{3}$$

since (relation 3, Table IV of RCP, p. 146)

(14)
$$\sum \sigma_3(u)\sigma_3(v) = \frac{\sigma_7(n) - \sigma_3(n)}{120}$$

where, in the \sum_{v} , u+v=n $(u, v \ge 1)$.

We are now ready to prove (B). Comparing the coefficients of x^n in (6') we obtain

(15)
$$27.320n^2\sigma_7(n) = 27.320\tau(n) + 27^2 \cdot 80^2 \sum_{u+v=n,u,v\geq 1} uv\sigma_3(u)\sigma_3(v).$$

We, therefore, have

(16)
$$\tau(n) \equiv n^2 \sigma_7(n) \pmod{3^3}.$$

1947]

Case 1. n=1(3). In this case (15) and Lemma 3 give

(17)
$$\tau(n) \equiv n^2 \sigma_7(n) \pmod{3^4}.$$

Case 2. $n \equiv 2 \pmod{3}$. In this case (15) and Lemma 4 give

$$\tau(n) \equiv n^2 \sigma_7(n) - \frac{27 \cdot 20}{120} \left\{ \sigma_7(n) - \sigma_3(n) \right\} \pmod{3^4}$$

or

(18)
$$\tau(n) \equiv (n^2 + 36)\sigma_7(n) \pmod{3^4}$$
$$\equiv (n^2 + 9)\sigma_7(n) \pmod{3^4}$$

since, when $n \equiv 2(3)$, we have

$$\sigma_7(n) \equiv \sigma(n) \equiv 0(3),$$

 $\sigma_3(n) \equiv 0(9),$

from (12) and (13).

(17) and (18) together give (B).

Mordell proved Ramanijan's conjecture

$$\tau(mn) = \tau(m)\tau(n) \qquad \text{if } (m, n) = 1.$$

From this result or directly we can prove that

(C)
$$\tau(n) \equiv 16n\sigma_9(n) \pmod{5^3} \quad \text{if } n \equiv 0(5),$$

(D)
$$\tau(n) \equiv n^2 \sigma_7(n) \pmod{3^4} \qquad \text{if } n \equiv 0(3).$$

DELHI UNIVERSITY AND
GOVERNMENT COLLEGE, LAHORE