
ON THE NUMBER OF POSITIVE SUMS OF 
INDEPENDENT RANDOM VARIABLES 

P. ERDÖS AND M. KAC1 

1. Introduction. In a recent paper2 the authors have introduced a 
method for proving certain limit theorems of the theory of prob
ability. The purpose of the present note is to apply this general 
method in order to establish the following: 

THEOREM. Let Xi, X^ • • • be independent random variables each 
having mean 0 and variance 1 and such that the central limit theorem is 
applicable. Let s& = X i + X 2 + * * • +Xk &nd let Nn denote the number 
of Sk's, l^k^n, which are positive. Then, 

lim Prob. < < a> = — arc sin a1/2, 0 ^ a | 1. 
\ n ) TT 

This theorem has been proved in the binomial case 

Prob. [Xj = 1} = Prob. {Xj = - l} = 1/2 

by P. Levy3 who also indicated that it is true for more general 
random variables. 

However, the authors felt that their proof is of independent inter
est, especially since it follows an already established pattern.2 

2. The invariance principle. We first prove the following: 
If the theorem can be established for one particular sequence of 

independent random variables Fi, F2, • • • satisfying the conditions 
of the theorem then the conclusion of the theorem holds for all se
quences of independent random variables which satisfy the con
ditions of the theorem. In other words, if the limiting distribution 
exists it is independent of the distributions of the individual Xs. 

Let 

lO if s ^ O , 
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1 This paper was written while both authors were John Simon Guggenheim 

Memorial Fellows. 
2 P. Erdös and M. Kac, On certain limit theorems of the theory of probability, Bull. 

Amer. Math. Soc. vol. 52 (1946) pp. 292-302. 
3 P. Levy, Sur certains processus stochastiques homogènes, Compositio Math. vol. 7 

(1939) pp. 283-339, in particular, Corollaire 2 on pp. 303-304. 
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and note that Nn = ]C?-i ^(^r). Let now 

« ) = ] - , i = o, i, • • • , kt 

and put 

We have 

and we wish now to estimate E(\\l/(sni)— \l/(sr)\) for Wi_i+l^rgw,- , 
Notice that 

£ ( I *(*»«) - *(*) | ) = Prob. {sni > 0, sr £ 0} 

+ Prob. {sn. ^ 0, s, > 0} 

and that f or e > 0 

Prob. {sn. > 0, sr g 0} = Prob. {sni ^ €^ / 2 , ^ ^ 0} 

+ Prob. {0 < sni < en1/2, sr g 0} 

S Prob. {sWi — 5r è €^t } 

+ Prob. {0 < *n, < €wt
1/2}. 

By Chebysheff s inequality 

( i / 2 ) w>% ~~ y 

P r o b . {̂ n,- - 5 r è €^- } ^ 
e2fii 

and hence 

, . n% — r , i/2% 

Prob. {sni > 0, sr g 0} g h Prob. {O < *„< < era, }. 

In exactly the same way we obtain 

/ % tli — f t 1/2 % 

Prob. {sni ^ 0, sr > 0} S h Prob. { - mi < sn. g 0} 
€2fli 

and thus (for w t _ i + l ^ r ^ w » ) 
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E( | 4>(snt) - *(*) | ) ^ 2 - ^ ^ + Prob. { - mT < sni < en/2}. 

Finally, 

E(\Dn\)è~J:- f, {m-r) 
ne* i=i m r^m-r^i 

1 * 
-\ ]C (ni "" ni-u Prob. {—em < sn. < em } 

n »,i 

_ 1 * (»< — m-i)(m — tii-i — 1) 

ne1 i^i m 
1 k 

H X) (»< ~ »<-0 P r 0 b - { "" €ni < Sn4 < €»< } 

= R(n, e, k). 

We note that, letting w—»oo while keeping k and e fixed, we get 
1 ^ i . ,„ x „ . r e

 2,o, i + iog* 
+ € 

1 * 1 r e 

lim JR(n, e, *) = Z — + (2ir)-1/a *-«f/»<fo < 
n-»oo &€2

 t==i i J _ 6 &€ 

(using the central limit theorem). Let S > 0 ; we have 

Prob. { \Dn\ ^ 5} ^ *(»,€, *)/« 

or, recalling the definition of Dni 

R(n, e, ft) 
Prob. { — Ê *(*) - — Z (»< ~ *<-0*(*»«) I ^ 4 

II » M » *-l I / 
We have furthermore 

Prob. {— J2 Hsr) < 4 = P r o b ' \~ Ê *(*) < «, | Dn | < «1 
I 7* r==l / U r-l J 

+ Prob. {— E Hsr) < a, | P» | è 4 

g Prob. i— Z (^-««-OlKO < « + 4 
\n i=al ; 

.R(M, &, e) 

In the same way we obtain 
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Prob. i— £ Hsr) < a\ 
U r = l / 

( 1 ^ ï R(n, e, *) 
è Prob. ]— E (m - m-d+(snù < « ~ 4 - ~ 

\n »•«! ; 6 
Combining the above inequalities we have 

( l i , ) R(n, €, k) 
Prob. <~Z2 (n{ - »*-i)iK*n<) < a - d> 

\n immX J ô 

(1) g Prob. j — < «j 

^ Prob. ^— Z (*< - » i - 0 * ( O < « + 4 + - ^ ^ — • 
I » »-i ) ô 

Let now d , G2, • • • be independent, normally distributed 
random variables each having mean 0 and variance 1 and let 
Rj = Gi+ • • • +Gj. I t then follows, almost immediately, from the 
multidimensional central limit theorem that 

lim Prob. \— J2 (»< - »*-.i)iK**<) < p\ 
n->» V n i = i j 

= Prob. i—jr^Rt) < X = phtf). 

If in (1) we let n—><*> while keeping k, e and 5 fixed we obtain 

l + l o g £ € fiVn ) 
Pk(a — ô) ^ lim inf Prob. ^ < a> 

• £<•} (2) ^ lim sup Prob, 

1 + log k e 
i K ( 0 + { ) + _ _ + T . 

Notice that the above inequality holds for all random variables satis
fying the conditions of our theorem. Thus if for some particular se
quence Fi, F2, • • • we can prove that 

(Nn Ï 2 
lim Prob. < < a> = — 
n-»oo \ n ) ir 

arc sin a1/2 = p(a), 0 ^ a ^ 1, 
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then, making use of (2), with a replaced by a —S and by a+ô we 
get a t once 

1 + log k e 1 + log ^ € 
p ( a _ 3 ) <:M<;p(a + s ) + + 

#€2ô o keh o 
Making use of (2) again we are led to 

p{a - 2d) - 2 — — — — - — < lim inf Prob. <—- < a> 
1 + log £ 2e 

f§ lim sup Prob. £<•} 
1 + log * 2e 

^ p ( a + 2 5 ) + 2 — - — — + - • 

Since this inequality holds for all k, e and S we can put, for instance, 

and obtain, by letting fe-*oo, 

(Nn ) 
lim Prob. < < a> = p(a). 
n->oo ( ^ j 

Use has been made of the fact that p(a) is continuous for all a. The 
invariance principle stated at the beginning of this section has thus 
been proved. 

3. Explicit calculations for a particular sequence of random vari
ables. Having established the invariance principle we could appeal 
to P. Levy's result concerning the binomial case and thus complete 
the proof of the general theorem. We prefer, however, to work with 
another sequence of independent random variables because we feel 
that the calculations are of some independent interest and because 
they again emphasize the usefulness of integral equations in proving 
limit theorems.4 

We consider independent random variables Fi, F2, • • • such that 

Prob. {Y, < u] = — f <r\*\dy, j = 1, 2, • • • , 

and we set Sj— F i + • • • + Yj. 
It should be noted that although E^Yf)^! we are justified in 
4 See M. Kac, On the average of a certain Wiener functional and a related limit 

theorem in calculus of probability, Trans. Amer. Math. Soc. vol. 59 (1946) pp. 401-414. 



1016 P. ERDÖS AND M. KAC [October 

using the Y's inasmuch as Nn is independent of the variance of the 
F's as long as the variance is different from 0. In fact, Nn remains 
unaltered if one multiplies all the F's by the same positive constant. 

We are going to calculate 

*n(i0 = £(exp (uNn)) = E (exp (uf^ *(*,) j \ 

Setting 

p(y) = 2 - 1 e x p ( ~ | y | ) 

we have 

/

oo /» oo / n / i \ \ 

•J expf uJ2 f[ ^y*)) 
-p(yi) • • • P(yn)dyi • • • dyn 

or, introducing the variables 
si = yi, 

2̂ = yi + y*> 

sn = y\ + yi + • - - + y», 

• • • I exp ( u 23 Hsj) ) 
-00 J - 0 0 \ J = l / 

We also introduce the auxiliary functions 

/

oo /•—oo / n \ 

• • • J exp I u 23 <K )̂ J 
'P(si)P(s2 — si) - - - p(sn — sn-.i)ds! • • • <fon_i, w > 1, 

and 

Fi(«, 5i) = exp («iKsi))£(*i)-

We have, for » > 1 , 

ƒ 00 

p(sn - J ^ . I ) F » - I ( « , 5n_i)^n_i 
- 0 0 

or, in more convenient notation, 
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ƒ 00 

p(s - t)F»-.i(u9 t)dL 
-00 

We also have 

(4) <t>n(u) = f Fn(u, s)ds 
J -oo 

and 

| Fn(u, s) | ^ exp (Re u) max | Fn~i(^, i) | • 
— oo </<oo 

Since 

| Fi(u} s) | S exp (Re u) 

we get 

| Fn(u, s) | ^ exp (n Re w). 

Thus the series 
00 

G(u,s;z) = ]C^»(«i s)*"-1 

converges for sufficiently small \z\. 
Using (3), we obtain, almost immediately, 

G(u, s;z) — exp (u\l/(s))p(s) ƒ 00 

p(s — t)G{u, t; z)dt 
- 0 0 

or 

exp (•— u\l/(s))G(u, s; z) — 2"1 exp (— | 5 | ) 

(5) z C °° 
— I exp ( - | s - 11 )G(u, t; z)dL 
2 «/-„oo 

For s > 0 we have 

&(w, $; *) — 2~*1<r* = — er9 I e'G(w, *; 2 )^ 
2 «^ - 0 0 

ƒ
00 

e-'G(u, t; z)dt. 

(6) 
25 

I t is easily seen that , for sufficiently small \z\, G(u, t; z) is an ab
solutely integrable function of t. 

Differentiating (6) twice with respect to s we are readily led to 
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d*G 
— + (se" - i)G = 0. 
as2 

In the same way we get for s < 0 

d*G 
— + (z - 1)G = 0. 
as2 

Thus we get 

G = A exp ((1 - se")1'2*) + £ exp ( - (1 - sew)1/2s), s > 0, 

and 

G = C exp ((1 - z)1/2s) + # exp ( - (1 - z)l'2s), s < 0, 

where A, B, C, D are functions of u and z. Since G is an integrable 
function of 5 we must have A =D==0. 

Thus 

(7) G = B exp ( - (1 - ze^yih), s > 0, 

(8) G = C exp ((1 - zY'h), s < 0. 

From the absolute integrability of G and the integral equation (5) 
it follows that 

exp (— u\//(s))G(u, s\ z) 

is continuous for all s and, in particular, for s = 0. This observation 
yields 

(9) Be~~u = C. 

Rewriting (6) in the form 

z r° z r8 

e~~uG(s) - 2-le-s = — e~s I *'G(*)<Ö H ^8 I e*G(t)dt 
2 J -.ao 2 J 0 

+ 7 ' ƒ
00 

e-'G^dt 

and substituting expressions (7) and (8) we get after a few ele
mentary transformations 

* z 
C J5 = — 1. 1 + (1 - s)1/2 1 - (1 - s^)1 '2 

This together with (9) yields 



19471 POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES 1019 

(1 - z)1'2 - (1 ~ zeuyi2 (1 - s)1 '2 - (1 - zeuyt* 
B = eu, C = 

s(>w — 1) z(eu - 1) 
and thus G is completely determined.5 

In particular, we get 

/ : 
G(u, s; z)ds 

(1 - z)1 '2 - (1 - ze")1/2 

L(l-ze")1/2 ( l -z ) 1 ' 2 ] ' *(*• - 1) L(l - ze")1'2 (1 - z)1 

On the other hand (see (4)) 

ƒ 00 00 

GO, s; z)ds = X <t>n(u)zn-1 

—.<*> « .==1 and hence 0n(w) is the coefficient of zn~l in the power series expan
sion of 

(1 - z)l<2 - (1 - zeuy2[- eu 

-i—i. 
*0M - 1) L(l -ze»)1'* (1 -z) 

A simple computation gives finally 

£(exp (uNn) = 0n(«) 

= E C i / 2 > ^ 1 / 2 f K - i ) f c + z ( i - ^ M ) ( i + ^ ( i + 1 ) M) . 
eu ~ 1 ife+I-n 

Setting 

we obtain the characteristic function of Nn/n. 
For large k and / we have 

c w ~ ( - i ) * - i - — : ~ — — , C L 1 / 2 I , ~ ( - l)* 
2& - 1 (irk)1'2 (TTZ) 1/2 

and it is easily seen that, in the limit n—> <*>, we can use these asymp
totic expressions in the sum. 

6 Having found an explicit expression for G it is not too difficult to find explicit 
expressions for Fn(u, s) and verify the recursive relation (3). Since this recursive rela
tion together with the formula for Fi(u, s) determine G uniquely one might substitute 
the verification process for the derivation of the formula for G. 
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Thus 

lim E( exp ( — # » ) ) 

1 
= lim 

P. ERDÖS AND M. KAC 

• f . - l ! 
n-»oo TT(1 - «<«/») tTi 2k - 1 (*(* - &))1/2 

. (1 — e*w»)(l + e**(l-*/»+l/n)) 

1 r1 (1 - «'«*)(! + e**u-*>) I f 1 d# 
2T^JO X(X(1 - x))1'2 IT J o (*(1 - *))*/* 

= I e^xdl — a rcs in# 1 / 2 J . 

We complete the proof by appealing to the continuity theorem for 
Fourier-Stieltjes transforms. 
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