A NOTE ON LOCAL CONNECTIVITY

EDWARD G. BEGLE

Two neighborhoods of a point are involved in the definition¹ of local connectivity: a space T is p-LC at a point x if every neighborhood U of x contains a neighborhood V of x such that any continuous p-sphere in V bounds a continuous (p+1)-cell in U. T is p-LC if it is p-LC at every point, and it is LCⁿ if it is p-LC for $0 \le p \le n$.

For the case p=0, it is well known that there is an equivalent definition: a space T is 0-LC if every point has arbitrarily small neighborhoods V such that any continuous 0-sphere in V bounds a continuous 1-cell in V. But for p>0, Borsuk and Mazurkiewicz have shown by an example² that these two definitions are not equivalent.

Hence the question arises as to the relative size of V with respect to U in the first definition. At first glance, the Borsuk-Mazurkiewicz example would seem to indicate that V must be considerably smaller than U. This, however, is not the case.

THEOREM. If a space T is LCⁿ, then each point of T has arbitrarily small neighbrhoods V such that any continuous p-sphere, $0 \le p \le n$, in V bounds a continuous (p+1)-cell in \overline{V} .

PROOF. Let U be a neighborhood of a point x of T such that any continuous 0-sphere in U bounds a continuous 1-cell in U. Let A be the class of all neighborhoods V of x such that any continuous p-sphere, 0 , in V bounds a continuous <math>(p+1)-cell in U. Since T is LCⁿ, A is not vacuous. Order the elements of A by inclusion. Since the continuous image of a sphere is a compact set, the union of the elements of any simply ordered subset of A is again an element of A. Hence, by Zorn's lemma, A contains a maximal element, V_0 .

We assert that $\overline{V}_0 \supset U$. If not, let y be a point of the open set $U - \overline{V}_0$, and let W be a neighborhood of y, $W \subset U - \overline{V}_0$, such that any continuous p-sphere, 0 , in W bounds a continuous <math>(p+1)-cell in U. Since p > 0, any continuous p-sphere in $V_0 \cup W$ is either in V_0 or in W, so $V_0 \cup W$ is an element of A, which contradicts the maximality of V_0 .

Received by the editors May 2, 1947.

¹ S. Lefschetz, *Locally connected and related sets.* I, Ann. of Math. vol. 35 (1934) pp. 118–129.

² K. Borsuk and S. Mazurkiewicz, Sur les rétractes absolus indécomposables, C.R. Acad. Sci. Paris vol. 199 (1934) pp. 110-112.

Now, by the original choice of U, V_0 has the property required by the theorem.

We remark that the same proof holds, with trivial modifications, for homology local connectivity.

It is an open question whether the neighborhood V can be required to be connected.

YALE UNIVERSITY

UNCONDITIONAL CONVERGENCE IN BANACH SPACES

S. KARLIN

Introduction. This note investigates an apparent generalization of unconditionally convergent series $\sum x_i$ in weakly complete Banach spaces. A series of elements with x_i in E is said to be unconditionally convergent if for every variation of sign $\epsilon_l = \pm 1$, $\sum_{i=1}^{m} \epsilon_i x_i$ is convergent. This formulation of the definition of unconditional convergence is equivalent to that given by $\operatorname{Orlicz}[4]$.¹ We call $\sum x_i$ unconditionally summable if there exists a finite row Toeplitz matrix (b_{ik}) such that for every variation of sign $\sigma_i = \sum_{k=1}^{m_i} b_{ik} \sum_{l=1}^{k} \epsilon_l x_l$ converges. The fact that unconditional summability implies unconditional convergence is established in this note. Finally, applications to orthogonal functions are presented.

Preliminary lemmas. In what follows, b_{ik} will denote an arbitrary finite row Toeplitz matrix.

LEMMA 1. If $S_n(\theta) = \sum_{i=1}^{m} a_i r_i(\theta)$ converges to an essentially bounded function f(t), then $\left|\sum_{i=1}^{m} a_n r_n(\theta)\right| \leq c$ almost everywhere. $(r_n(\theta)$ denote the Rademacher functions.)

PROOF. This is an immediate consequence of the result that

(1)
$$\left(\int_{0}^{1} \left(\max_{1 \le n \le m} \left| \sum_{1}^{n} a_{l} r_{l}(\theta) \right| \right)^{p} d\theta \right)^{1/p} \\ \le C \left(\int_{0}^{1} \left| S_{m}(\theta) \right|^{p} d\theta \right)^{1/p}, \qquad 1 \le p \le \infty,$$

148

Received by the editors April 30, 1947.

¹ Numbers in brackets refer to the references cited at the end of the paper.