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In his paper Linear equations in non-commutative fields (Ann. of 
Math. vol. 32 (1931) pp. 463-477) Professor Oystein Ore defines 
regularity and irregularity of rings and an "order of irregularity" in 
such a way that regularity becomes irregularity of order 1. Here
with the following problem is proposed: Do irregular rings of order 
n>\ really exist? If so of what type are they? In this note these ques
tions will be answered. A classification on this line yields nine dif
ferent types, for which explicit examples are given. This classifica
tion turns out to be essentially one of semigroups. For the so-called 
"ringlike domains," that is, domains having one distributive law 
only, the position is otherwise and will be treated in detail elsewhere. 

The first section of this paper contains the general considerations, 
the second one the examples. 

1. General considerations. According to Ore we call a ring without 
divisors of zero 9? left-regular if any two elements <z, ô£9î have a non-
trivial1 common left multiple (C.L.M.), that is, there exists at least 
one pair of elements x, 3>£9î, not both 0, such that xa=yb 
= C.L.M.(a, b). Otherwise we call dt left-irregular. In the same way 
right-regularity and right-irregularity are defined. Another approach 
to this problem is suggested by the concepts of linear dependence 
and independence. For the sake of generality we do not exclude rings 
with nontrivial2 divisors of zero and define: 

If aj?i+ • • • +#n&n=]Ca*fr*==0> a*> bi&ft, where at least one 
&t5^0, we say that the n elements at- are linearly right dependent 
{lin. r. dep.), and if at least one a» 5^0, that the n elements 6» are 
linearly left dependent {lin. I. dep.). But if for a given set alt • • • , 
aw£9î it follows from the equation a\X\+ • • • +anxn = ̂ T,a&i 
= 0 (x*£9î) that all xz = 0, we say that the set ai, • • • , an is 
linearly right independent {lin. r. ind.). Similarly linear left inde
pendence {lin. I. ind.) is defined. 

Obviously a set containing a left (right) divisor of zero is lin. r. (1.) 
dep.; a set containing a subset, lin. dep. on one side, is itself lin. dep. 
on the same side. Any subset of a lin. ind. set is therefore also lin. 

Received by the editors February 27, 1947. 
1 There exist always the trivial common "one-sidedn multiples 0•#»()•& and 

a-O — b-0 and the "mixedn multiple xa = by with x=*b, y==a. 
2 0 shall be called a trivial divisor of zero. 
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indep. on the same side as the set. A set containing equal elements is 
lin. dep. on both sides. Therefore a lin. r. (1.) ind. set contains only 
unequal elements, which are not 1. (r.) divisors of zero.3 

If we can find at least one set of n elements ax, • • • , an&ft, 
which is lin. r. indep., and if any set of (n+1) elements of 9t is 
lin. r. dep., we say, according to Ore, that 9Î is of right order (of 
"irregularity") n. Similarly we define the left order of 9î. But if for 
any positive integer n there exists in 9Î a set of n lin. 1. (r.) ind. 
elements, we say, 9Î is of infinite left (right) order and write 
ni resp. w r=oo. We may therefore classify the rings into types 
(nh nr), where nx denotes the left, nr the right order of the ring. Thus 
for example a ring of type (1, 1) without divisors of zero is regular on 
both sides in the sense of Ore. Irregularity means that ni and/or 
nr> 1. The order zero, that is, ni resp. nr = 0, means of course that all 
elements of 9t are right resp. left divisors of zero. 

THEOREM. There exist no rings of finite (left or right) order n>l. 

PROOF.4 Assume 9Î to be of right order nr>l. Then there exist at 
least two lin. r. ind. elements a, ô£9î , that is, ax+by = 0 implies 
x = y = 0. Then the 4 elements aa, ab, ba> bb will also be lin. r. ind., be
cause by using the associativity of multiplication and the right dis
tributive law3 aa-x+ab-y+ ba-z+bb-t = a(ax+by) + b(az+bt)=0 im
plies ax+by = az+bt = 0 and hence x = y = z = t = 0. Similarly the 8 
elements aaa> aab, • • • , bbb and generally all the 2W elements, ob
tained by forming all possible "words" of length n using the 2 
"letters" a and ô, can be proved to be lin. r. ind. Indeed, if 
Ci (i = l, • • • ,v = 2n~l) are the above defined products of length 
(» — 1), the 2n products of length n are given by ac», bd (i = 1, • • • , v). 
Therefore ^ad-Xi+^bCi-yi^a^CiXi+b^Ciyi^O implies X)c*x* 
= X^<y* = 0. If we assume the lin. r. independence of the cif x» = ^ t = 0 
is implied and therefore the lin. r. ind. of the 2n elements acit bc% is 
proved by induction. As the same holds for left indep., our theorem 
is proved. 

COROLLARY. There exist at most the following 9 types of rings: 

8 In view of later developments, it is worth while to note that all these remarks 
follow either directly from the distributive laws or from their consequences 0-r = 0, 
r - 0 = 0 , for any rÇEfâ. a(b-\-c) —ab+ac is the right distributive law, (a+b)c=ac-\-bc 
the left one. 

4 This theorem can also be obtained as a corollary of a more general theory con
cerning modules with rings as operator domains. Such modules seem to have been 
considered independently by Paul Dubreil (see Mathematical Reviews vol. 7 (1946) 
pp. 2, 3). 
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(0, 0) , (0, 1), (0, oo), (1 , 0) , (oo, 0) , (1 , 1), (1 , oo), (oo, 1), (oo, oo).« 

That rings of each of these types really exist will be shown by 
examples in §2. 

This result permits us to formulate our classification of rings in 
the following form : 9t is of r. (1.) order 0 only when all its elements are 
1. (r.) divisors of zero. Otherwise 9t is of r. (1.) order 1 or oo. I t is of r. (1.) 
order 1 when every pair of elements has a nontrivial C.R.(L.)M. 
It is of order oo when not every pair of elements has a nontrivial 
C.R.M. In this form we see that our second approach is not much 
more general than our first. I t is also seen that our classification of 
rings is one of semigroups only, because "divisor of zero" and "com
mon multiple" are notions based on multiplication only. A semigroup, 
namely, is a system with one composition (multiplication), which is 
(1) general, (2) unique and (3) associative. It remains only to define 
"divisors of zero" for a semigroup @ as follows: a £ @ is a right 
(left) divisor of zero in ©, if there exists a pair x, ;y£@, x^y, such that 
xa = ya (ax = ay).6 Therefore a is not a r. (1.) divisor of zero, if 
xa=ya (ax = ay) implies x = y. Thus © is a semigroup without di
visors of zero, right and/or left, if the right and/or left cancellation 
law (that is, ba = ca and/or ab = ac implies b = c) holds in ©. Now if 
we consider a ring as a semigroup with respect to multiplication the 
above defined concept of divisor of zero becomes identical with that 
usually defined for rings.7 

In this connection it is of interest to point out some differences 
between semigroups and rings: (1) In a ring with divisors of zero 
there must exist right as well as left divisors of zero; but in semi
groups it may occur that all elements are right divisors of zero (that 
is, ni = 0) with not a single one being a left divisor of zero. (2) In a 
ring of order 0, say ni = 0y there exists for every pair of elements a t 
least one nontrivial C.L.M. = 0; but in semigroups it may occur 
that ni = 0 with no C.L.M. whichever existing. (3) As a semigroup 

5 As to rings without divisors of zero, only such of the last type ( oo, oo ) are prop
erly irregular in the sense that they can not be immersed in a quotient field accord
ing to the construction given in the previously mentioned paper of Ore, while the 
others permit this construction, which requires regularity on one side only. This does 
not exclude the immersibility into other kinds of embracing fields. The analogous 
remark holds for semigroups too. 

6 In the case © contains a zero element the latter is called a trivial divisor of zero. 
7 Every divisor of zero in the multiplicative semigroup is also a divisor of zero in 

the ring and conversely. For trivial ones this is clear. For nontrivial ones this follows by 
the distributive laws: ac = bc, a^b, c?*0 implies (a—&)c=0, a —fc^O, c^O. dc—0, 
d^O, C9*0 implies, for each x, d((c-\-x) —x)—0 and hence d(c-{-x) —dx, c-\-X9*x and, 
for each y, ((d+y) — y)c—0 and hence (d+y)c~yc, d+y^y. 
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may be finite, but not of order 0 or 1 (for rings this is impossible), it 
seems more appropriate to use the letter i (to suggest "irregular") 
instead of the symbol oo in the notation for types of semigroups. 
This is especially necessary in view of a more general theory of 
"ringlike domains, " as will be shown elsewhere. 

2. Examples. We start by constructing a semigroup without 
divisors of zero g of type (i, i). Any "word" composed by the 2 letters 
xf y shall be an element of Ç, and nonidentical "words" represent dif
ferent elements. The composition, defined by connecting one word 
to the other, is obviously (1) general, (2) unique, (3) associative, and 
(4) complies with the cancellation laws. No C.R.(L.)M.'s exist ex
cept in the case of one word being a right (left) "end" (that is, 
"divisor" or "part") of its pair. Therefore § '1S of the required type. 

Consider all elements of % as the basis of a module $1 over a ring 
31, which may be chosen as the field {0, 1} of residue classes (mod 2). 
Thus each nonzero element of 9W has the form ]£ƒ»> where the / / s 
form an arbitrary finite set of different elements of §. Defining multi
plication in SDÎ by the distributive laws, SDÎ becomes a ring which 
can be called the "semigroup ring" of % over 9Î, written 9t(S). We call 
the sums ]T)/»- "polynomials," those consisting of one term "mono
mials." The "degree" of a monomial ƒ £ 5 , / £ 9 U 3 0 is the number of its 
letters and is denoted by ô(/) A polynomial p containing only mono
mials of equal degree 5 is called a "homogeneous" polynomial of 
degree ô = 8(p). Any polynomial P is a sum of monomials. P is also a 
sum of homogeneous polynomials pi of different degrees, that is, 
J > = = Z ? - i ^ w i t h S ( ^ i ) < S ( ^ 2 ) < • • • <S(pn) = b(P)1thedegreeofP.By 
multiplying terms of highest degree #(P), S(Q) of P ^ O , Q^O we 
obtain every product of degree S(P) + 5(Q) only once. This yields 
exactly all terms of highest degree S(PQ) in PC, which therefore 
cannot vanish, giving the rule b(PQ) = 8(P)+5(Q). From this it fol
lows as for ordinary polynomials that our ring 9t(g) does not con
tain divisors of zero. dt(%) is of the type (oo, oo): to show this it is 
enough to find 2 monomials which have neither C.R.M. nor C.L.M. 
Indeed, by choosing the generators x, y themselves whatever the 
polynomials P , QE9î($) , it is obvious that Px^Qy (xP^yQ), be
cause Px (xP) is composed of monomials ending (beginning) with x 
only, while all monomials of Qy (yQ) end (begin) with y. 

Next we construct a semigroup without divisors of zero ® of 
type (1, i) consisting of all symbols xay* (a, j3 = 0, 1, 2, • • • ). We 
define equality and composition by: xaiyfilssxa*yfo only when «1 = 0:2, 
j3i=ft and conversely. xaiyPl • xa2y^=xyy^1+fi2

f y=ai+2^1a2. The 
composition is (1) general, (2) unique, (3) associative, and (4) 
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complies with the cancellation laws, as may be easily verified.8 To 
any 2 elements gi=xaiyfiiQ® ( i = l , 2), we can find 2 elements 
Zi=x*iy1li (i = l, 2), such that Zigi—Zzgt) for example, if we take 
?7i=j32, ?72=j3i, £1 = 2^2 , £2 = 2 ^ 1 , the C.L.M. (gu g2) becomes a^yi+fc 
with X = 2^1a2+2/32ai. But generally the gi have no C.R.M., because 
giZi=xai+*iy13*+'<, and because for ft, fc5*0 and a i^a 2 (mod 2) no 
&, r/i can be found such that gi2i = g2£2; for example xy and x2y cer
tainly have no C.R.M. ® is therefore of the type (1, i). 

Similarly, as before, we construct a semigroup ring 9t(®) and write 
the general element P£9î(®) as a polynomial in y using the left 
distributive law: P = XXo P%(x)yi

i where the pi are polynomials in x, 
A*0*0 ̂ 0 a n d M==SÎ/(P), the "degree of P in y." Note the multiplica
tion rule: yPp(x)=p(x2^)yP. As may be easily verified 9î(®) does not 
contain divisors of zero. The monomials xy and x2y have no C.R.M. 
in 9t(®). Indeed from xyP=x2yQ it would follow that the different 
monomials of xyP are equal in some order to those of x2yQ, which is 
impossible. Therefore nr = <*>. 

To prove ni = lwe take advantage of some results contained in O. 
Ore's paper Theory of non-commutative polynomials (Ann. of Math. 
vol. 34 (1933) pp. 48Q-508) and consider the ring 9Î* of the noncom-
mutative polynomials P* = ^riy1 where ri = ri(x)=pi(x)/pl (x) are 
elements of the field of all rational functions of x over 3Î. The multi
plication in dt* shall be defined by yr — fy+r'~r(x2)y; that is, 

7(x) = r(x2)t r'(ff) - 0.9 

Thus we specialize Ore's operations in such a way that 9l(®) may be 
identified with a subring of 9t*. We know that for every 2 elements 
P, Qe9l(@)C9t* we can find S*f r*e3t*, not both 0, such that 
S*P = T*Q = C.LM. (P, Q)Gdl*. By left-hand multiplication with 
a suitable polynomial p{x) we get pS* = S, pT* = T, S, TE^i®) and 
therefore SP=r<2=*C.L.M.(P, <2)G$K(®). By the way, the ring 
8Î* itself is also of the type (1, 00 ). We need only to show that nr = 00. 
It is sufficient to prove that, for example, xy-P*?*x2y'Q* for every 
pair P*, <2*G9l*, not both 0. Indeed, from xyP*=x2yQ* it would 
follow that xy(^2ri(x)yi)=x2y(^2si(x)yi)$ that is, ^2ri(x2)yi+1 

—x^s^x^y^1, that is, Ti(x2)=xsi(x2) and hence, for at least one 
index i, x = ri(x2)/si(x2)=t(x2), that is, x is a rational function of x2, 
which is impossible. 

Now we construct a semigroup $ of type (0, i) by taking all the 
8 The semigroup could also have been defined by the 2 generators x and y and the 

defining relation yx**x*y. 
9 Compare loc. cit. p. 481, equation (3), 
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symbols (words) / E S (see first example) and adding the symbols 
e and/e (that is, a word of g with an c "hung on"). We define equality 
by identity and composition by connecting words, with the addi
tional provision tha t an e not standing at the end (that is, belonging 
to the first (left) factor) shall be suppressed. In this way we obtain 
again one and only one symbol of § , that is, the composition is gen
eral and unique; its associativity is obvious too. All elements of § 
are right divisors of zero, because for / £ 5 C § we have fe^f, but 
fe-h=fh for every A£^p. But § has no left divisors of zero because 
hi7*h2 implies, for every fe£Jp, hhx^hh^ The two special elements 
x> yÇz& have no C.R.M. because xh^yh for every hÇz&. § is there
fore indeed of type (0, i) . 

As in the previous examples we construct the semigroup ring 9t(§) . 
Its elements have the forms R~P(x, y) + Q{x, y )€==P+Çe, where 
P , QG9t(g). The multiplication rule is RiR% = (Pi+Qie)(Pi+Q#) 
= (P 1 +e 1 )P 2 +(P 1 +Öi)Ö2€ = (P i+0 i )P2 . P i P 2 = 0, Rlt R2*0 implies 
(Pi+Öi)i>2 = (Pi+0i)Ö2 = 0, that is, P i + 0 i = 0, that is, P i = (?i, that 
is, Pi = (?i (mod 2). Therefore every element P 2 G3î (^ ) is a right 
divisor of zero, that is, tii = 0. But wr=<x>, because the 2 elements 
x, 3>G9Î(§) have no C.R.M.: xR^yR* for any Pi, P 2 €9Î (§ ) -
$K(̂ >) is therefore of type (0, oo). 

We consider the semigroup S consisting of the symbols e, xn and 
xne (w = l, 2, • • • ) with identity and composition defined as for £ . 
Every element of 3 is a right divisor for zero, but none a left one; 
any 2 elements have a C.R.M. Therefore 3 is of the required type 
(0, 1). Considering again the semigroup ring 9t(3) we see that its 
elements have the form R~p(x)+q(x)e with the same multiplica
tion rule as in 9t(§) and therefore «j = 0. But wr = l, because for any 
Ri = pi+qi€ (i = l, 2) we can find Ui = Si+U€ with Pi£/i = P2Z72; for 
example, choose /i = /2 = 0, Si=£2+<Z2» s2 = £ i+2 i . 

For the type (0, 0) we may construct an example, different from the 
trivial {0} containing the zero element only, by taking any finite or 
infinite set of different symbols xiy one of them being "0." This set 
becomes a semigroup J by defining multiplication by x»xy = 0, that 
is, every product is 0. J is of type (0, 0), and so is the semigroup ring 
9î(7), as is easily seen. 

Conclusion : As the type (1, 1) is that of the most common rings and 
as by simple symmetry our examples prove also the existence of rings 
(semigroups) of the types (<*>, 1 ),(<*>, 0) (resp. (i, 1), (i, 0)) and (1,0), 
we have proved that rings and semigroups of every one of the 9 pos
sible types really exist. 
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