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DANIEL ZELINSKY 

In a paper entitled Noncommutative valuations, Schilling [8]1 proved 
that if an algebra of finite order over its center is relatively complete 
in a valuation (where the value group of the nonarchimedean, ex
ponential valuation is not assumed to be commutative) then the 
value group is commutative. A similar type of theorem, proved by 
Albert [l], states that if an algebra of finite order over a field is an 
ordered algebra, then the algebra is itself commutative. 

In the present paper, the notions of valuation and ordered ring are 
carried over in the obvious fashion to the case of nonassociative 
algebras (the set of values of a valuation are no longer required to lie 
in an ordered group, but only in an ordered loop). In this situation, 
an analogue of Schilling's result remains true with an added hy
pothesis : If an algebra of finite order has a unity quantity and has a 
valuation inducing a rank one valuation of the base field, then the 
value loop of the algebra is commutative, associative, and archi-
medean-ordered. No completeness is needed. In particular, every 
valuation of an algebra (with a unity quantity) of finite order over 
an algebraic number field has a group of real numbers for its value 
loop. 

However, in general the obvious extensions of both Schilling's and 
Albert's results are false, since there are noncommutative, nonasso
ciative algebras of arbitrary finite order over a field which have 
valuations with nonassociative value loops and which are ordered 
algebras. Examples of such algebras are obtained by proving that a 
necessary and sufficient condition for an ordered loop L to be the 
value loop of some algebra of finite order is that some subgroup of 
the center of L have finite index in L. We construct some such loops 
in §3. All such loops will be determined in another paper. 

1. Ordered loops. An ordered loop L is a set of elements 
x, y, zy • • • on which are defined a binary function, + , and a binary 
relation, > , with the following properties: 

(1) + is a single-valued function on LL to L. 
(2) If x and y are in Z, then there exist unique elements u and v 

in L such that u+x—y and x+v—y. 
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(3) There is an element 0 in L such that 0+x = x+0 = x for every 
x in L. 

(4) If x>y and y>z then x>z. 
(5) For each x and y in L, one and only one of the three possi

bilities x>y, y>x, x=y holds. 
(6) If x>y then for any z in L, x+z>y+z, z+x>z+y. 
We shall use the notations y—x and — x+y for the quantities u and 

vy respectively, defined in (2). 
Ordered loops have most of the elementary properties of ordered 

groups (in fact, lattice-ordered quasigroups, if suitably defined, 
have a theory closely paralleling that of /-groups). In particular, we 
list without proof the following lemmas, true in any ordered loop. 

(7) If x>y then x — z>y — z and — z+x> — z+y. 
(8) If x>y and xf*zy' or if x^y and x'>y' then x+x'>y+y', 

x—yf>y — x' and — y'+x>— x'+y. 
If n is a positive integer and x is an element of a loop we define the 

symbol nx inductively by writing lx = x, nx~ (n — l)x+x; we call nx 
the nth right multiple of x. 

(9) If nx>ny then x>y. 
(10) If x?£0 then every element of L obtained by adding a finite 

number of summands, each equal to x (with any association), is dif
ferent from zero. 

Let us also list a few definitions usually made in the study of loops. 
The center of a loop L is the set of all c in L that commute and asso
ciate with all elements of L. More precisely (cf. Albert [2, p. 516]) 
the elements c are characterized by the property that for all x and y 
of L, 

c + (x + y) = (c + x) + y = x + (y + c). 

An equivalent statement is that the center of L consists of all ele
ments of L invariant under the group of inner mappings of L (cf. 
Bruck [4, p. 257]). The definition of the center of a loop leads readily 
to the theorem that if c is in the center of L, then the loop generated 
by c is an abelian group and is contained in the center of L. 

A normal subloop N of a loop L is a subloop invariant under the 
inner mapping group of L. Equivalently, 

N + (x + y) = (N + x) + y = x + (y + N) 

for every x and y in L. The characteristic property of a normal sub-
loop N is the existence of a quotient loop L/N, formed in the usual 
way, to which L is homomorphic. Clearly any loop contained in the 
center of L is a normal subloop of L. 
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An element x is positive if x>0. An ordered loop is discrete if it 
has a smallest positive element (note that this terminology differs 
from that of Krull [7, p. 171]). 

Two ordered loops are order-isomorphic if there is a one-to-one 
correspondence between them which preserves the operation + and 
the relation > . 

A subset H of an ordered loop L is an isolated subloop or /-ideal in 
case H is a normal subloop and if H contains, with x and y, every z 
such that x>z>y (an equivalent definition is obtained by taking 
3> = 0). Just as in the case of abelian groups, the characteristic prop
erty of an isolated subloop is the existence of a natural ordering of 
the quotient loop L/H, so that if x>y in L, then x+H^y+H in 
L/H (cf. Birkhoff [3, p. 310]). 

An ordered group is archimedean-ordered in case it has no isolated 
subgroups besides zero and the whole group. The principal property 
of archimedean-ordered groups is that every such group is order-
isomorphic with an additive group of real numbers (Cartan [5]). 

Our study of nonassociative valuations will be based on the fol
lowing two theorems on ordered loops. 

THEOREM 1. Let L be a discrete ordered loop having a least positive 
element, e. Then e is in the center of L and so generates an associative, 
commutative, normal subloop G of L. Furthermore, G is an isolated sub-
loop of L. 

PROOF. We must show that for all x, y in L, 

(11) e + (x + y) = (e + x) + y = x + (y + e). 

First, there is no element of L between x+y and e + (x+y). For if 
x+y<z<e + (x+y) then 0<z — (x+y) <e, contradicting the hy
pothesis that e is the least positive element of L. Similarly there is 
no element between x+y and (e+x)+y, nor between x+y and 
x + (y+e) so that of the three elements in (11), all are greater than 
x+y but none is greater than any other. Hence they are equal. This 
proves that e is in the center of L so that the loop G generated by e is 
an abelian group and is also in the center of L. If this group is not 
isolated, there is an x in L but not in G and there is a positive integer 
n with 0 <x <ne. Let n be chosen as the smallest such positive integer. 
Then (n — X)e<x<ne, 0<x — (n — l)e<e, contrary to our hypothesis 
on e. 

THEOREM 2. Let L be an ordered loop containing an archimedean-
ordered group G in its center. Suppose there is a positive integer n such 
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that G contains the nth right multiple of every element of L. Then L is 
commutative, associative and archimedean-ordered. 

PROOF. First, suppose G is discrete. Then G is order-isomorphic 
with the additive group of rational integers and we may prove that L 
also has a least positive element. For consider the set of all nx with 
x>0 in L. This is a set of positive elements in G and so there is a 
smallest one, say ne. By (9) this determines a unique e>0 in L which, 
again by (9), is a least positive element of L. By Theorem 1, e gen
erates an isolated abelian group H in the center of L. The intersection 
GC\H is then an isolated subgroup of G and is not zero since it con
tains ne. Since G is archimedean-ordered, GC\H=G and HZ)G. But 
consider the mapping of L onto the ordered quotient loop L/H. The 
group G maps onto zero so that for every y in L/H, we have ny = 0. 
Then by (10), it follows that ^ = 0, L/H=0, L=H, which proves 
Theorem 2 in this case. 

Second, suppose G has no least positive element. In this case, 
using the fact that G is order-isomorphic with an additive group G' 
of real numbers, we shall set up an order-isomorphism between L and 
a group V of real numbers. We already have an isomorphism be
tween G and G'. Let the correspondent in G' of an element u of G be 
denoted by u'. Then if x belongs to L, define 

A(x) = [all u' inG' such that u è %], 

B(%) = [all u' in Gf such that u g x]. 

Since we are assuming that G' is not discrete it follows in the usual 
fashion that for each x, g.l.b. ^4(#)=l.u.b. B(x). We define a cor
respondence on L to the real numbers as follows : 

(12) * - > * ' « g.Lb. A{%) - l.u.b. B(x). 

If x is in G we then have two definitions for x' which obviously coin
cide. By the standard methods it can now be proved that (12) is a 
homomorphism so that the set V of all x' is a group of real numbers. 
Then if x' — yr we have (nx)'=nx'=ny' = (ny)'; but nx and ny are in 
G so that by hypothesis nx~ny and by (9), x=y. Thus (12) is an iso
morphism. Finally, if x>y then A (x) QA (y), x'^y' and xf?£yf by the 
one-to-one character of (12). It follows that (12) is an order-iso
morphism, which completes our proof. 

2. Valuations. Let R be a ring (not necessarily associative). A 
valuation of R is a function V which associates to each nonzero ele
ment of R an element of an ordered loop L with the properties 
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(13) V(a + b)^ min [V(a), V(b)]f 

(14) V(ab) = V(a) + V(b), 

whenever a, b and a+b are nonzero elements of R. We define V(0) = <*> 
where the symbol oo is to have the properties oo+# = x-foo = oo, 
oo >x for all x in L. Then (13) and (14) hold for all a, b in R. We de
note by V(R) the set of all V(a) for a 9*0 in JR. 

Such a valuation, even though L is nonassociative, has most of the 
elementary properties of an ordinary valuation. In particular, 
V(ai, • • • , a*)=min [F(#i), • • • , F(a*)] unless for some pair of 
distinct subscripts i and j , V(a{) = V(aj). 

Note that a ring R with a valuation F has no divisors of zero, for 
if ab = 0 then oo = V{ab) = V{a) + V(b) and at least one of V(a), 
V(b) must be oo. If R is a division ring (that is, for every a^O and 
b oî R there exist unique elements c and J in R such that ac = da = b), 
and if in addition i? has a unity quantity e such that ea = ae~a for 
all a in R, then F(JR) is an ordered loop called the value loop. This is 
the case in the following theorem. 

THEOREM 3. Let A be an algebra {not necessarily associative) of order 
n over afield F and let A contain a unity quantity. If A has a valuation V 
then V induces a valuation on F such that V{F) is an ordered abelian 
group G. If G is archirnedean-orderedy then the value loop L = V(A) is 
in fact associative, commutative and archimedean-ordered. 

PROOF. Since A is an algebra of finite order over F without divisors 
of zero, it follows that A is a division ring and that L is an ordered 
loop. Since the elements of F commute and associate with the ele
ments of A, G will be in the center of L. Our proof will then merely 
consist in showing that for every x of L, (n\)x belongs to G, so that 
Theorem 2 will immediately give the desired result. 

LEMMA 1. L/G is a finite loop whose order is not greater than n. 

PROOF. Suppose there are n + 1 distinct elements of L/G and hence 
n + 1 elements # ] , • • • , xn+i of L that are incongruent modulo G. 
Then x{= V(ai) for some ai oî A. But there exist ai in F, not all zero, 
with X /* i a t =0 . Then <*> = F( X/W*) a n d since oo ̂ m i n [F(a»-at-)], 
we must have F(a*-af-) = V(ajaj) for some i and j with i^j. That is, 
V(ai)+Xi= V(<Xj)+Xj, Xi= — V(cxi) + V(a/) +x3; Xi=Xj (mod G). This 
is a contradiction. 

LEMMA 2. If K is a finite loop whose order is not greater than n, then 
for every x of K, nlx = 0. 
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PROOF. First, for every x there is a positive integer nx^n such 
that nxx = 0. For there certainly is a pair of distinct positive integers 
px and qXy both not greater than n, such that pxx = qxx. And by sub
tracting x's from the right, one at a time, we arrive at nxx = 0f where 
nx= \px — qx\. 

Second, if nx divides a positive integer p, then px = 0. This is 
proved by writing p = nxq and making an induction on q. Hence p = n\> 
being divisible by nx for every x, has the property that px = 0 for all x. 

Lemmas 1 and 2 together imply that for every x of L, nix maps 
into zero in L/G and so is in G. Then Theorem 2 immediately asserts 
the truth of Theorem 3, as predicted. 

3. Examples of ordered loops. According to Lemma 1, L is an 
ordered loop containing the ordered group G in its center in such a 
way that the index of G in L is finite. In this section we shall demon
strate that for some nonarchimedean groups G there actually exist 
nonassociative ordered loops L in the relation to G described above. 

In particular, let G be an ordered loop with an isolated subloop H 
and let G/H be discrete. Denote by e an element of G whose image in 
G/H is the least positive element of G/H. Next, let i t be a cyclic 
group of order n generated by an element b. We shall construct an 
ordered, nonassociative loop L as a loop extension of G by K. L con
sists of all ordered pairs (k, g) with k in K and g in G. Addition in L 
is defined by the rule 

(fa, gi) + (fa, £2) = (fa + fa, gi + g2 + f [fa, k2]) 

where f (fa, fa) is a function on KK to G with /(O, k)=f(ky 0 ) = 0 
for all k of K. This makes L a loop with the identity element (0, 0). 
The loop G is embedded in L in the sense that the set of all (0, g) is 
isomorphic with G. We make the following restrictions on the 
"factor set" f (fa, fa) that will allow us to order L. If mi and m^ are 
nonnegative integers, both less than n, then we demand that 
f(ni)b, m$) be in H or in e+H according as mi+m2<n or m-i+m^^n. 
Clearly if H^ü we may still choose the function ƒ so that L is non-
associative and noncommutative. Regardless of this fact, we can 
order L by defining (mib, gi) > (m%b, g2) in case 

gx + H > g2 + H, 

or 

gi + H = g2 + H and n > m\ > m2 è 0, 

or 
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gi + H = g2 + H, mi = m2 and gx > g2. 

This is clearly a linear, transitive ordering of L which preserves the 
ordering of G. A straightforward application of the definition shows 
that L is actually an ordered loop under this ordering. 

It is a trivial exercise to prove that the commutative and associa
tive laws hold in L whenever one of the summands is in the center of 
G. Thus if G is an abelian group, it is in the center of L and L is an 
example of an ordered loop such as we were searching for. 

4. Examples of nonassociative valuations. Let L be any ordered 
loop and D any ring (not necessarily associative) without divisors of 
zero. Then we shall exhibit a ring R with a valuation F with V(R) =L 
and with a residue class ring2 isomorphic with D. The ring R is con
structed in the usual fashion as the ring of "power-series" with ex
ponents in L and coefficients in D. More precisely, R consists of all 
functions ƒ on L to D with the property that the set £(ƒ), consisting 
of all x in L for which f(x) T^O, is well-ordered by the ordering of L. 
If ƒ and g are in R we define f+g to be the function whose value at 
each x of L is f(x)-\-g(x) and the product f g to be the function whose 
value at x is3 ^f(y)g(z)> the summation extending over all pairs 
(y, z) with y+z = x. The summation is meaningful because for a 
given x there is only a finite number of pairs (y, z) for which y is in 
£(ƒ), z is in L(g) and y-\-z=x. The proof of this fact as well as the 
proofs that L(f+g) and L(fg) are well-ordered and that R is actually 
a ring are essentially identical with the proofs given by Hahn [6, pp. 
647ff.]. A similar comment applies to the theorem that if D is a divi
sion ring, then so also is R. In particular if D has a unity quantity 1, 
then R has a unity quantity e with the characteristic property that 
e(0) = 1, e(x) = 0 if x^O. If we define V(f) for any ƒ of R to be the 
smallest element of £(ƒ), we have a function on R to L with V(R) = L . 
In fact this is a valuation, the proof of (13) and (14) proceeding 
exactly as in the associative case. To prove that the residue class ring 
is isomorphic to Z>, remark that the ring Q consists of all ƒ in R for 
which f(x) = 0 when x<Q and that the prime ideal P consists of all 
ƒ in R for which f(x) = 0 when x^O. The correspondence ƒ—»ƒ(()) is 
then an isomorphism of Q/P and D. 

2 If Q is the set of all x in R with V(x) ^ 0 and P is the set of all x with V(x) >0, 
then Q is a ring in which P is a prime ideal. The residue class ring Q/P is called the resi
due class ring of R. 

3 This is a very special type of power series ring, but more generality here would be 
unwarranted. 
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THEOREM 4. If we choose D to be a field and L to be an ordered loop 
such as was constructed in §3 (L contains a group G in its center with 
L/G finite), the resultant power-series ring R is an algebra of finite order 
over a field F and has a unity quantity. It also has a valuation V with 
a value loop L. The order of R over F is the index of G in L so that by 
suitable choice of L we can find algebras of arbitrary order over F with 
non-associative valuations. 

PROOF. Let Fbe the set of all ƒ in R such that L(f)CG. By the class
ical result, F is a field (Hahn [ó]). Let xi, • • • , xn be a maximal set 
of elements of L incongruent modulo G and let / i , • • • , fn be the ele
ments of R defined by the equations ƒ«•(#,•) = 1, ƒ,(#) = 0 if x^Xi. If 
g(x) is any element of JR, gfi(x) = ]CgO0/(2) » the s u m ranging over all 
y of L(g) and z of £(ƒ») with y+z*=x. Since £(ƒ,) consists of the single 
point Xi, we have the identity 

gfi(x) = g(* - *<)• 

If ƒ is any element of i?, let £»•(ƒ) be the set of all x in L{f) with 
x^Xi (mod G). Then each £»•(ƒ) is well-ordered and L(f) is the union 
of the disjoint sets £*(ƒ) ( i = l , • • • , n). Define f(x) to be the func
tion which is equal to f{x) on £»•(ƒ) but zero elsewhere and gi(x) to be 
f^x+Xi). Then ƒ* and gi are elements of R, fi==gifi and 

as) f-èr-it Hf* 
6-1 *»1 

Since gt(#) 5^0 implies that x+X{ is in £»•(ƒ) and hence congruent with 
Xi modulo G, we know that gi(x) is zero unless x^O (mod G), so that 
L(gi)C.G and gt- is in F. Hence (15) expresses the fact that R is a 
linear space of order not greater than n over F. In fact the ƒ»• are 
linearly independent over F, else ^gifi = 0 with the g» in .F, V(gifi) 
= V(gjfi) for some pair of distinct indices /, j , which implies that 
tffssxy (mod G), a contradiction. This completes the proof of Theorem 
4. 

If, in particular, D is the field of real numbers, the ring R is an 
ordered division ring4 if we define / > 0 to mean f(V[f])>0 in D. 
The proof is trivial. 

THEOREM 5. There exist noncommutative and {necessarily) nonasso-
ciative ordered algebras of arbitrary finite order over a field. 

4 An ordered division ring is a ring, linearly ordered by a relation > , such that 
a>0 and b>0 imply a+b>0 and ab>0. 
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