
SOME PROPERTIES OF CONTINUED FRACTIONS 
1 + doz + K(z/(1 + dj)) 

W. J. THRON 

1. Introduction. A continued fraction 

(1.1) adz) -\ 

with nth approximant An(z)/Bn(z), is said to correspond to the 
power series 

(1.2) l + dz + c2z
2+ •• • 

if the power series expansion of An(z)/Bn(z) agrees with (1.2) up to 
and including the term c*(„)2*(n), where k(n)—><*> as n—><*>. 

Leighton and Scott [ l ]1 proved that there is one and only one con
tinued fraction of the form 

a i z k l a<>zk2 

(1.3) 1 + — — 
1 + 1 + • • • , 

where all kn are positive integers, which corresponds to a given power 
series (1.2). 

The class of all continued fractions of the form 

(1.4) l + d0z + 
1 + diz + 1 + à& + • • • , 

which is studied in this paper, has the same property. This is shown 
in §2. In §3 convergence, and in particular uniform convergence, of 
continued fractions (1.4) is investigated. §4, finally, is devoted to a 
study of necessary conditions for the uniform convergence of (1.4) 
in a neighborhood of the origin. 

2. Correspondence. A sufficient condition for the existence of a 
continued fraction (1.4) which corresponds to a given power series 
P(z) of the form (1.2) is the existence of a solution for the system of 
formal identities 

(2.1) Pn(z) t z l + dnZ + * s ft - 0, 1, . . . , 
JPiH-lW 
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where P0(z)^P(z) and Pn(z) is a formal power series of the form 
(1.2). This is seen as follows. If such a solution exists one has for every 
w ^ l 

z z z 
P(z) = 1 + doz + 

Hence 

and therefore 

* ( * ) « 

1 + dlZ + • • . + 1 + dn-lZ + Pn(z) 

Pn(z)-An^1(z) + z-An-2(z) 

Pn(z)'Bn^(z) + Z'Bn^2(z) 

An^{z) ( - 1 )«-V 

Bn^(z) Bn^(z) [Pn(z) • Bn^(z) + z • Bn„2(z) ] 

Since -Bn(0) and Pn(0) are both different from zero for all n one now 
concludes that the power series expansion of the wth approximant 
agrees with P(z) up to and including the term cnz

n. The continued 
fraction therefore corresponds to P(z). 

Let Pn(z) be the formal derivative of Pn(z)- It is easily verified 
that dn = P w ' ( 0 ) - l and 

-PIH-IGO s 

JP»(s) - 1 — rfn£; 

provides a solution of the system (2.1). The following theorem has 
now been proved. 

THEOREM 2.1. For every power series of the form 

1 + C\Z + C2Z
2 + • • • 

there exists a continued fraction of the form 

(1.4) l + d0z + 1 + diz + 1 + d2z H 

W/MCÂ corresponds to the power series. The power series expansion of the 
nth approximant of the continued fraction agrees with the given power 
series up to and including the term cnz

n. 

The question whether more than one continued fraction of the 
type (1.4) can correspond to the same power series is answered in the 
next theorem. 

THEOREM 2.2. Two continued fractions 
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<2> , + * + * ( I T « - 0 > 

correspond to the same power es 

1 + c 4 c2z* + • • • 

if and only if dn — dl for all n è O . 

Let An/Bn and A,!/Bn be the nth approximants of the continued 
fractions (1) and (2) respectively. If both continued fractions cor
respond to the same power series then their (n + l)th approximants 
have power series expansions which certainly agree with each other 
up to and including the term involving gn+1. Now 

and similarly 

A n An+1 

Bn Bn+1 

An An+X 

Bn Bn+l 
( _ l)n+l2n+l + . . . . 

It follows that the power series expansions of An /Bn and An/Bn 

agree up to and including the term involving sn+1. Now B 0 = BQ = 1 
and hence AO=AQ and do = dó. 

The proof of the theorem is then complete if it is shown that the 
assumption 

Av s AV1 Bp ss Bv and hence dv — dV} 

iorv = 0f 1, • • - , w — l, leads to the conclusion dm — dj, a,ndAmzzAm, 
Bm=Bm . Making those assumptions one obtains 

___ z2(dm — dm)(Am~iBm-,2 — Am-.2Bm-.i) 

BmBf
m 

BmBm 

A combination of this result with the one concerning the power series 
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expansion of this difference leads to the conclusion dm=*dJl and 
hence Am^AJ, J3m=Bm'. 

The proof of the theorem below is omitted since it is analogous to 
the proof given for the corresponding theorem concerning continued 
fractions 1+K(anz/1) by Perron [2, p. 342]. 

THEOREM 2.3. If the continued fraction (1.4) converges uniformly in 
a region D, containing the origin in its interior, then the corresponding 
power series converges to the same function in the largest open circular 
region, with center at the origin, completely contained in D. 

It is of course not implied that the power series converges only in 
that circle. It is not possible to deduce convergence of the continued 
fraction from the convergence of the power series. This is true for all 
types of "corresponding" continued fractions studied so far. (See [2, 
§65].) For the type studied here this phenomenon occurs for a very 
simple function. Contrary to the cases previously investigated there 
are no terminating expansions for this type of continued fraction. 
Even rational functions have nonterminating expansions. The ex
pansion for P(z) = 1 is easily seen to be 

1— 2 + 1 — £ + • • • . 

This continued fraction converges to 1 only for \z\ <1 , while it di
verges for \z\ = 1, z 9* — 1 and converges to —z for all other values of z. 

The final two theorems of this section are analogues of two 
theorems of Leighton and Scott [l, pp. 600-601] for continued frac
tions (1.3). The proofs in our case are almost identical to the proofs 
given there and are therefore omitted. 

THEOREM 2.4. A necessary and sufficient condition that the continued 
fraction (1.4) converge uniformly to a holomorphic function in an open 
region D, containing the origin, is that the approximants An(z)/Bn(z) 
be uniformly bounded in every closed set contained in D for all n>no. 

THEOREM 2.5. Two infinite subsequences of approximants of the con
tinued fraction (1.4) which converge uniformly in an open region D, 
containing the origin, converge to the same holomorphic function in D. 

3. Convergence criteria. It is well known [2, p. 196] that for 
27^0 the continued fractions (1.4) and 

(3.1) x + do/x-1 
x + di/x + x + d2/x + • • • , 
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where x = zr112, —7r/2<arg x^7r/2, converge and diverge together. 
The expression (3.1) is of the form bo+K(l/bn)} where 

(3.2) 6 n = x + djx 

and hence 

(3.3) dn = xbn — x2. 

Convergence criteria developed for continued fractions of the form 
bo+K(l/bn) (see [3]) are therefore applicable to (3.1) and conse
quently indirectly to (1.4). 

Conditions on the sequence {dn} which insure convergence of (1.4) 
in a neighborhood of the point 2 = 0 can be obtained as follows. Let 
\dn\ ^M for all n and let \x\ =r. Then 

| bn | = r - M/r. 

Now for r è l + (Af+l) 1 / 2 one has r-M/r^2 and hence | bn\ = 2 . The 
Pringsheim criterion then insures the convergence of (3.1). It follows 
from the equivalence that the continued fraction (1.4) converges for 
all 0 7^0 for which 

| * | £ 1/(1 + (M+ 1)1/2)2. 

The convergence of (1.4) for 0 = 0 is trivial. For all values of z under 
consideration the approximants of (1.4) are uniformly bounded. 
This is seen as follows : 

I » / z \\ I 1 I I . / 1 \ | 1 
\K[ 1 = — • \K[ 1 S 1, 
I " - A l + dvz)\ I x I \v-1\x + d}v/x/\ 1 + (M+ l ) 1 ' 2 

since, for \x+dn/x\^2, \K(l/(x+d,/x))\ £1 [3, Theorem 3.2]. An 
application of the Vitali theorem then leads to the conclusion that 
(1.4) converges uniformly in every closed set contained in the circular 
region 

z < 1/(1 + (M + l)1/2)2. 
THEOREM 3.1. If 

\dn\^M 

for all n then the continued fraction (1.4) converges f or all z in the circular 
region 

\z\ = 1/(1 + (M + I)*/2)2. 

The convergence is uniform in every closed set contained in the interior 
of this circular region. 
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Observing that if \dn\ *zm then 

| bn | è m/r — r, 

one easily shows that (1.4) converges if 

|* | ^ V(l - (*»+ 1)1/2)2. 

To show that the convergence is uniform one makes use of the fact 
that in this case the approximants of (1.4) are uniformly bounded 
away from the origin but are finite. One thus proves the following 
result. 

THEOREM 3.2. If 

\dn\ ^m 

for all n then the continued fraction (1.4) converges f or all z in the region 

\z\ è 1/(1 ~ (t»+ 1)1/2)2-

The convergence is uniform in every closed bounded set in the interior of 
this region. 

These theorems gain in importance if they are used in conjunction 
with the following results which give criteria for the convergence of 
(1.4) in certain angular openings. 

THEOREM 3.3. Let the region D(y, k, e) be defined by: r-eie 

ED(y, k, e) if 

* ~ (c2- & 2 ) 1 ' 2 - c-cos(y' -6) ' 

where — T/2<y^T/2, & < l / 2 cos 7, e>0 , and 

7 = arg (k-e** - e2*7), 

c = I keiy — e2iy I. 

If there exist f unctions e(y) and k(y) and constants 71 and 72 such that 
all elements of the sequence {dn} lie in the intersections of the regions 
D(y, k(y), e(y)) for 7 1 ^ 7 ^ 7 2 then the continued fraction (1.4) con
verges for all z in the angular opening 

— 272 S arg z S ~ 271. 

Moreover the convergence is uniform in every closed bounded set in the 
interior of this region. 

Consider a fixed x=peiy and define as C(p) the region formed by 
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all points on or outside the circle with center at 

p2(ke{y - e2{y) 

and radius 

p(4 + 2e+ kyy>\ 

where e is positive and k is real. 
Assume that all numbers dn of (3.1) lie in the region C(p). Then the 

elements bn of (3.1), connected with the numbers dn by relation (3.2), 
satisfy the condition 

(3.4) | bn - kp | ^ (4 + 2e + £2p2)1/2. 

For every fixed p therefore 

I J * - kP\ à (4 + k*p*)112 + I?(P), 

where r;(p)>0. A known result [3, Corollary 6.2] then insures the 
convergence of (3.1) for for x~peiy. 

If all the elements of the sequence {dn} lie in a region D(y, k, e) 
which is the intersection of all sets C(p)y 0 < p < o o , then it follows 
from what was said above that the continued fraction (3.1) con
verges for every x^O on the ray arg x=y. The boundary of D(y} k, e) 
is the envelope of the boundaries of the regions C(p). 

Recalling the definition of y', noting that 

c = | j k < 7 - **y\ = (k2+ 1 - 2£ -COST) 1 / 2 , 

and denoting the boundary points of C(p) by r • eie one easily arrives 
a t the following equation for the boundary of C(p) 

r2 + p4(&2+ 1 - 2k-cos y) - 2rp2 cos (y' - 6)(k2 + 1 - 2&COS7)1'2 

= (4 + 2c)p2 + k*p\ 

Combination of like powers of p and introduction of c leads to 

(3.5) r2 + p*(c2 - k2) - 2 p V - c o s (7' - 6) + 2 + e) = 0. 

Differentiating (3.5) with respect to p2 one obtains 

p V - k2) = re cos (7' - B) + 2 + €. 

Elimination of p from (3.5) leads to 

r2(c2 - k2) - (re cos (7' ~ 0) + 2 + c)2 = 0. 

A part of the curve defined by this equation is the desired envelope. 
Thus one finds that r-ei9£:D(y, k, e) if and only if 
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r^ 2Jhj 
' ~ ( c 2 - k2)1*2- c-cos(y' -6) ' 

The proof of the first part of Theorem 3.3 is now easily completed 
with the remark that the convergence of (3.1) implies the con
vergence of (1.4) for the corresponding z ?*0. That (1.4) converges 
for z = 0 is obvious. 

From the results concerning value regions of [3 ] it follows that the 
imaginary numbers on the line segment from — i to i are not taken 
on by any of the approximants <t>n{x) of (3.1) for 71 ^ a r g #^72, X5*0. 
Further, the functions $w(x) are rational functions of x which have 
no poles in the region under consideration [3, Lemma 2.2]. Thus the 
sequence {<t>n(x)} is a normal family of holomorphic functions in this 
region and since it converges it converges uniformly (Montel-Vitali 
theorem) in every closed bounded set in the interior of the region 
under consideration. Finally, if {fn(z)} is the sequence of approxi
mants of (1.4) it follows from the relation 

1 
ƒ»(*) = — 4>n(x) 

X 

that {fn(z)} converges uniformly wherever {(j>n(x)} does provided 
I l/x\ or \z\ is bounded. This completes the proof of the theorem. 

For k = 0 the number € can be omitted in the statement of Theorem 
3.3 since (3.1) is known to converge if |&w| à 2 . Further, if fe = 0 then 
Y ; = x —27 and c = l. These remarks together with the substitution 
/3= — 27 suffice to establish the following corollary of Theorem 3.3. 

COROLLARY 3.1. Let JP(j3) be the region, not containing the origin, 
bounded by the parabola 

2 
r ~~ 1 + cos (0 - 0) ' 

If there exists an interval [/Si, /32] such that all elements of the sequence 
{dn} lie in the intersection of the regions P(/3) as /3 ranges over the interval 
[ft, 182] then the continued fraction (1.4) converges f or all z in the angular 
opening 

jSi g arg z S 02. 

Moreover the convergence is uniform in every closed bounded set contained 
in the interior of this angular opening. 

The result corresponding to the limiting case k—»— 00 of Theorem 
3.3 can be stated as follows. 
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THEOREM 3.4. If there exist real numbers 7 and 8, with — 7 T < Y < 0 

< 8 < 7 T and S — 7<7r, SWC& that for suitable choice of the argument 

7 =s arg dn ^ ô for all n 

then the continued fraction (1.4) converges f or all z in the angular open
ing 

— 7T — 27 < arg z < ir — 28. 

77£e convergence is uniform in every closed bounded set in the interior of 
this angular opening.2 

Van Vleck's convergence criterion insures the convergence of (3.1) 
provided 

(3.6) - TT/2 + e ^ arg bn g TT/2 - e, e > 0, 

and provided further]T)| bn\ diverges. Consider a fixed x^O, such that 

- T/2 + 8 < arg x < TT/2 + 7. 

The corresponding 2 then satisfies the conditions of the theorem. Now 
let 

e(x) = min (arg x + TT/2 — 8; TT/2 + 7 — arg #); 

then e(x)>0 and 

- TT/2 + e(x) S - TT/2 + 8 + «(*) 

^ arg x ^ 7r/2 + 7 — É(#) ^ 7r/2 — e(^). 

Further 

- TT/2 + €(*) ^ 7 - TT/2 ~ 7 + e(x) ^ arg (dn/«) 

^ 8 + TT/2 - 8 - e(x) g TT/2 - e(x), 

provided the numbers dn satisfy the conditions of the theorem. It is 
then clear that the elements bni defined by relation (3.2), satisfy 
condition (3.6) with e = e(x). ^2\bn\ converges only if lim dn = d and 
if z = —l/d. This value however does not lie in the angular opening 
obtained for the variable z. This completes the proof of the con
vergence of (3.1) and hence of (1.4). 

The uniform convergence is deduced in a manner analogous to that 
employed in the proof of Theorem 3.3. In this case the values of the 
approximants of (3.1) all lie in the half-plane dt(w)*z0. 

2 The original statement of this theorem contained an error which was kindly 
pointed out by the referee. 
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All the preceding theorems of this section have the following com
mon characteristics: For {dn} contained in a certain region D there 
exists a region Z(D) such that for all zÇzZ(D) the continued fraction 
(1.4) converges. Moreover we saw that the convergence is uniform 
over every closed bounded set in the interior of Z(D). Since the 
approximants of (1.4) are rational functions and have no poles for 
zÇzZ(D) they are holomorphic for s £ Z ( D ) . The uniform convergence 
then insures that the limit function is holomorphic in the interior of 
Z(D). 

THEOREM 3.5. Let D be any one of the regions defined in the preced
ing theorems such that for {dn} QD the continued fraction (1.4) converges 
uniformly for all z contained in any arbitrary closed bounded set in 
the interior of the corresponding region Z(D) ; then the function to which 
the continued fraction converges is holomorphic in the interior of Z(D). 

THEOREM 3.6. Let L be the set of limit points of the sequence {dn}, and 
let S be an open set containing L. Let D and Z(D) be regions of the 
type defined in Theorem 3.5. If S is contained in D the continued frac
tion (1.4) converges, at least in the wider sense, for all zÇ:Z(D) and the 
function to which it converges is meromorphic in the interior of Z(D). 

I t is clear that there exists an integer n' such that, for all n^n'y 
d n £ S . Thus Theorem 3.5 applies to the continued fraction 

1 + dn,z + 
1 + dn>+iz + 1 + dn>+2z + • • • 

and Theorem 3.6 follows. 

4. Behavior in a neighborhood of the origin. In Theorem 3.1 it was 
shown that the condition \dn\ ^Minsures uniform convergence of the 
continued fraction (1.4) in some neighborhood of the origin. This 
raises the question: to what extent is boundedness of the sequence 
{dn} a necessary condition for the existence of a neighborhood of the 
origin in which the continued fraction converges uniformly. Three 
partial answers to this question are given below. 

THEOREM 4.1. If the sequence {dn/n} is unbounded then there does 
not exist a neighborhood of the origin in which the continued fraction (1.4) 
converges uniformly. 

The denominator Bn(z) of the nth. approximant of (1.4) is a poly
nomial of nth. degree 

D ( \ 1 i ( n ) i (n) n 

Bn{z) = l + gi z+ • • • + gn z . 
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From the recursion formula for Bn(z), that is, 

(4.1) Bn{z) = (1 + dnz)Bn^{z) + zBn^{z), 

one easily deduces that 

gi - n — 1 + ]C dp. 
j>»i 

Let p£n) be the roots of Bn{z) ; then it is clear that 

c> A 1 
gi ** ~ 1* ""TV 

*-i p / w ) 

One now shows that the sequence {g^/n} is unbounded. The fol
lowing relation holds: 

(w) „ <w-l)v 

gl 

w n w \w — 1/ \ n / 

and hence 
(n) 

gl + 
(w-1) 

ft 
W ~ 1 

A
ll 

ft 

The unboundedness of g^/n now follows immediately. Since g^/n 
is the arithmetic mean of the reciprocals of the roots one is now in a 
position to state that given an arbitrary positive ô and an arbitrary 
integer N there exists an integer N'>N such that one of the roots of 
BN'(Z) lies in the neighborhood \z\ <5 . In order that there be uni
form convergence in some neighborhood of the origin it is necessary 
that there exist a neighborhood of the origin in which Bn(z)j£0 for 
all n>tio, since for 2 = 0 (1.4) converges to 1. This completes the proof 
of the theorem. 

THEOREM 4.2. If dn>0for all n and if {dn} is unbounded then there 
does not exist a neighborhood of the origin in which the continued frac
tion (1.4) converges uniformly. 

The proof of this theorem depends on three lemmas which are also 
of some interest for their own sake. 

LEMMA 4.1. If dy>0 for v = 0, 1, • • • , n then all the roots of Bn(z) 
are real and negative and the roots of Bn(z) and Bn-\(z) separate each 
other\ that is, 

(n) (n-1) (n) (n-1) (n) 
Pi < Pi < P2 < ' • * < Pn-1 < Pn < 0. 
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One notes first that all the coefficients of Bn{z) are positive. That 
the root of Bi(z) is negative is then clear. That no two successive 
Bn(z) have common roots follows from the well known identity 

An{z)Bn-i{z) - An^1{z)Bn{z) = ( - 1 )»-V 

and the fact that J?n(0) = 1 for all n. Now assume that the lemma 
holds for all v up to and including v — n — 1. Then 

^n(Pv ) = (1 + 0„p„ )Bn^i{pv ) + pp Bn-2(Pv ) 

(n-l) f (n-1) 

Thus for two successive roots of Bn-\ the polynomial Bn(z) takes on 
values with opposite signs. Hence there must be a root of Bn between 
any two roots of Bn-\. Further, for the first root (in order of size) 
Pi**"1*, Bn has a sign opposite to that of Bn-i while for z<0 and suffi
ciently small the signs of the two polynomials are the same. Hence, 
since by the induction hypothesis there is no root of J3n-i to the left of 
pi*-"1*, Bn must have a root to the left of pi*""1*. In a similar way 
(Bm(0) = 1, for all m) one shows that there must be a root of Bn be
tween p^Ti1* and 0. Thus all roots of Bn are accounted for and the 
lemma is proved. 

LEMMA 4.2. If dv>0for v = 0, 1, • • • , n then either — l/dn is a root 
of Bn or there is at least one root of Bn to the left and at least one to the 
right of —l/dn* {Note that Lemma 4.1 insures that all roots of Bn are 
real and negative.) 

For z = — l/dn one has 

Bn{~ l/dn) = - 1 A W W - l/dn). 

This expression may be equal to zero ; if not one deduces from it that 
either Bn or Bn-2 has a root to the left as well as to the right of 
— l/dn* An application of Lemma 4.1 completes the proof of this 
lemma. 

A combination of these two lemmas leads to the following result. 

LEMMA 4.3. If dv>0 for v = 0t 1, • • • , n then there is at least one 
root of Bn which is greater than or equal to every — 1/d? and at least one 
root which is less than or equal to every —\/dv. 

If \dn\ is unbounded there then exist polynomials Bn{z) with 
arbitrarily large n which have roots p£n) such that | p£n) | is less than 
any preassigned 5 > 0 . This completes the proof of Theorem 4.2. 
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THEOREM 4.3. If dn^Ofor all n and if lim dn = <*> then there does not 
exist a neighborhood of the origin in which the continued fraction (1.4) 
converges uniformly. 

One easily verifies that 

frw-n*-ni/»w. 
If the conditions of the theorem are satisfied (|H"-x <M ) y " 

is un
bounded. Now at least one of the quantities | l/p£n) | is as large as the 
geometric mean of the set. The proof of the theorem is then com
pleted by the same argument that was used in the two previous cases. 
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