NICHOLSON'S INTEGRAL FOR $J_{n}^{2}(z)+Y_{n}^{2}(z)$

J. ERNEST WILKINS, JR.

The integral in question is

$$
\begin{equation*}
J_{n}^{2}(z)+Y_{n}^{2}(z)=\left(8 / \pi^{2}\right) \int_{0}^{\infty} K_{0}(2 z \sinh t) \cosh 2 n t d t, \tag{1}
\end{equation*}
$$

and its validity for arbitrary complex n when the real part of z is positive is proved in [1, pp. 441-444] ${ }^{1}$ with the help of Hardy's theory of generalized integrals and integrations over contours in the complex plane. It is the purpose of this paper to give a much more elementary proof of (1).
We begin by observing [$1, \mathrm{p} .146$] that if $D=z(d / d z)$, then three linearly independent solutions of the equation

$$
\begin{equation*}
\left[D\left(D^{2}-4 n^{2}\right)+4 z^{2}(D+1)\right] y=0 \tag{2}
\end{equation*}
$$

are $J_{n}^{2}(z), Y_{n}^{2}(z)$ and $J_{n}(z) Y_{n}(z)$. Equation (2) may be written as

$$
\begin{equation*}
z^{2} y^{\prime \prime \prime}+3 z y^{\prime \prime}+\left(1-4 n^{2}+4 z^{2}\right) y^{\prime}+4 z y=0 . \tag{3}
\end{equation*}
$$

We shall now show that $y(z)=\int_{0}^{\infty} K_{0}(2 z \sinh t) \cosh 2 n t d t$ is a solution of (3). When the real part of z is positive it is clear that $K_{0}(2 z \sinh t)$ is sufficiently small at ∞ to permit us to differentiate under the integral sign as many times as we please. Therefore,

$$
\begin{equation*}
y^{\prime}(z)=2 \cdot \int_{0}^{\infty} \sinh t K_{0}^{\prime}(2 z \sinh t) \cosh 2 n t d t . \tag{4}
\end{equation*}
$$

If we make use of the differential equation

$$
\begin{equation*}
x K_{0}^{\prime \prime}(x)+K_{0}^{\prime}(x)-x K_{0}(x)=0 \tag{5}
\end{equation*}
$$

satisfied by $K_{0}(x)$, then we find that

$$
\begin{aligned}
y^{\prime \prime}= & \int_{0}^{\infty}\left\{4 \sinh ^{2} t K_{0}(2 z \sinh t)-2 z^{-1} \sinh t K_{0}^{\prime}(2 z \sinh t)\right\} \cosh 2 n t d t \\
y^{\prime \prime \prime}= & \int_{0}^{\infty}\left\{\left(8 \sinh ^{3} t+4 z^{-2} \sinh t\right) K_{0}^{\prime}(2 z \sinh t)\right. \\
& \left.-4 z^{-1} \sinh ^{2} t K_{0}(2 z \sinh t)\right\} \cosh 2 n t d t .
\end{aligned}
$$

It follows that
${ }^{1}$ Numbers in brackets refer to the reference cited at the end of the paper.

$$
\begin{aligned}
& z^{2} y^{\prime \prime \prime}+3 z y^{\prime \prime}+\left(1+4 z^{2}\right) y^{\prime}+4 z y \\
& =\int_{0}^{\infty}\left\{4 z^{2} \sinh 2 t \cosh t K_{0}^{\prime}(2 z \sinh t)\right. \\
& \\
& \left.\quad+4 z \cosh 2 t K_{0}(2 z \sinh t)\right\} \cosh 2 n t d t
\end{aligned}
$$

If now (4) is integrated by parts and use is made of (5) we find that

$$
4 n^{2} y^{\prime}=-4 n z \int_{0}^{\infty} \sinh 2 t K_{0}(2 z \sinh t) \sinh 2 n t d t
$$

whence another integration by parts shows that $4 n^{2} y^{\prime}$ is equal to the right-hand side of (6). Therefore $y(z)$ is a solution of (3). Consequently, there exist constants A, B, C such that

$$
\begin{equation*}
y(z)=A J_{n}^{2}(z)+B Y_{n}^{2}(z)+C J_{n}(z) Y_{n}(z) \tag{7}
\end{equation*}
$$

We shall now show that

$$
\begin{equation*}
\lim _{z=\infty} z y(z)=\lim _{z=\infty} \int_{0}^{\infty} z K_{0}(2 z \sinh t) \cosh t d t=\frac{\pi}{4} \tag{8}
\end{equation*}
$$

the last equality being a consequence of the result [1, p. 388]

$$
\int_{0}^{\infty} K_{0}(u) d u=\frac{\pi}{2}
$$

In (8), z is restricted to real values. In fact, the difference of the integrands in the limitands in (8) is

$$
F(z, t)=z K_{0}(2 z \sinh t)(\cosh 2 n t-\cosh t)
$$

Now $x^{1 / 2} e^{x} K_{0}(x)$ is bounded on ($0, \infty$), so that

$$
|F(z, t)| \leqq A_{0}(z \operatorname{csch} t)^{1 / 2} e^{-2 z \sinh t}|\cosh 2 n t-\cosh t|
$$

Moreover, $\operatorname{csch} t \leqq 1 / t$ and the mean value theorem shows that

$$
|\cosh 2 n t-\cosh t| \leqq(2|n|+1) t(\sinh 2|n| t+\sinh t)
$$

whence we see that

$$
|F(z, t)| \leqq A_{1}(z t)^{1 / 2} e^{-2 z \sinh t}(\sinh 2|n| t+\sinh t)
$$

We can suppose that $z \geqq 1$. Since $\sinh t \geqq t$ and $(z t)^{1 / 2} e^{-z t}$ is bounded, we find that

$$
\begin{aligned}
|F(z, t)| & \leqq A_{2}(\sinh 2|n| t+\sinh t) e^{-z \sinh t} \\
& \leqq A_{2}(\sinh 2|n| t+\sinh t) e^{-\sinh t}
\end{aligned}
$$

Therefore, $F(z, t)$ converges dominatedly to zero as z approaches ∞, and this suffices to prove (8).

It is known [1, p. 199] that

$$
\begin{aligned}
& J_{n}(z)=(2 / \pi z)^{1 / 2} \cos \left(z-\frac{n \pi}{2}-\frac{\pi}{4}\right)+O\left(z^{-3 / 2}\right) \\
& Y_{n}(z)=(2 / \pi z)^{1 / 2} \sin \left(z-\frac{n \pi}{2}-\frac{\pi}{4}\right)+O\left(z^{-3 / 2}\right)
\end{aligned}
$$

From (7) we conclude that

$$
\begin{aligned}
\frac{\pi z y(z)}{2}= & A+(B-A) \sin ^{2}\left(z-\frac{n \pi}{2}-\frac{\pi}{4}\right) \\
& +\frac{C}{2} \sin \left(2 z-n \pi-\frac{\pi}{2}\right)+O\left(z^{-1}\right)
\end{aligned}
$$

This result is incompatible with (8) unless $A=\pi^{2} / 8, B=A, C=0$, and in this case $y(z)=\left(\pi^{2} / 8\right)\left\{J_{n}^{2}(z)+Y_{n}^{2}(z)\right\}$. This completes the proof of (1).

Reference

1. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1945.

American Optical Company

