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OF PRIME NUMBERS 
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1. Introduction. In connection with some recent unpublished in
vestigations concerning the Riemann hypothesis one of us raised the 
question whether log pn is convex for sufficiently large n, or at least 
whether it has few points of inflexion. (Throughout this paper £i = 2, 
£2 = 3, • • • , pn, • • • denotes the sequence of primes.) In other words: 
Is it true that the inequalities 

(1) Pn-l'pn+l > Pn, pm+lpm-1 < pm 

both have infinitely many solutions? We shall show that the answer 
is affirmative. 

A still simpler question is whether the sequence of primes itself is 
convex or concave from a certain n on. We shall prove that this is 
not so, that is, the equations 

/ o N Pn-l + Pn+l pm-1 + pm+1 
(2) * > Pn, ~ < Pm 

have infinitely many solutions.1 

If the well known hypothesis about prime twins is true, that is, if 
the equation pn+i—pn — 2 has infinitely many solutions, (1) and (2) 
of course are trivially satisfied. 

The first inequality of (2) is inserted only for the sake of complete
ness. I t follows from the well known fact that lim sup (pn+i—pn) = °° 
(since n\+2, n\+3, • • • , » ! + » are all composite). The proof of the 
other inequalities will be simple, but less trivial. 

Clearly pn-1pn+x>p2
n implies (pn-i+pn+i)/2>pn and pm>(pm-i 

+pm+i)/2 implies pm>pm-ipm+i. The well known relations between 
the various mean values suggest the following questions: Is it true 
that for every / the inequalities 

(3) (^±^)'"> * 
and 

Received by the editors May 12, 1947, and, in revised form, July 3, 1947. 
1 Professor G. Pólya and Mr. P. Ungâr communicated to us subsequently a proof 

very similar to our own. 
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(4) (^=f<fc 
have infinitely many solutions? By the well known relations between 
the means it follows that (1) and (2) is a consequence of (3) and (4), 
and that it suffices to prove (3) for t<0 and (4) for />0 . (The in
equality about means states that ((tf+b1)/!)11* is an increasing func
tion of t.)2 

An elementary proof of (3) and (4) is given in §2. The only result 
we use about primes is that 

(5) TC(X) > c\ #/log x. 

This can be found in the first pages of Ingham's book The distribu
tion of prime numbers. {ir(x) denotes the number of primes not ex
ceeding x.) 

All these questions can be investigated by a method which is less 
elementary than that given in §2, but which perhaps can be used to 
attack some of the unsolved problems which can be raised here. Only 
(2) is treated by this method (in §3). 

In §4 we state without proof some results about the number of 
solutions of (3) and (4). Finally we state some unsolved problems, 
which are natural generalizations of our theorems. 

2. Elementary proofs. 

THEOREM 1. The inequalities (3) and (4) have infinitely many solu
tions. 

We need the following lemma. 

LEMMA. Let A>0 be any constant. Then the inequalities 
1/2 

(6) pk ~ pk-l < Pk+l — pky Pk — Pk-l < Apk , 
, 1/2 
(7) pk+l ~ pk < pk — pk-l, Pk+l — pk < Apk 

have infinitely many solutions. 

The proof of (6) is quite trivial. It follows from (5) that for infi
nitely many m and a suitable c*, pm+i—pm<c* log pm. Determine the 
least k>mîor which pk+i—pk>pm+i—pm- Then clearly pk~i, pk, pk+i 
satisfy (6). 

Now we prove (7). Assume that (7) has only a finite number of 
solutions (that is, there are no solutions for p>po). Let m be large 

2 See, for example, Hardy-Littlewood-Pólya, Inequalities, p. 26. 
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a n d pm+i—pm<C2 log p m . L e t pr b e t h e smal l e s t p r i m e g r e a t e r t h a n 
p]i2. T h e n c lea r ly 

(8) pr+i — pr <J pr+2 — pr+1 < ' * ' â J^w+l ~ pm < C2 log ^ m . 

For if not let & (r<k^m) be the greatest index for which pk+i—Pk 
<pk—pk-i- Then clearly £*_!> pk} pk+i satisfy (7) (since pk+i—pk 
£pm+i-pm<C2 log pm<c2(pm)114<c2(£*)1/2). This proves (8). But if 
pt+i—pt—pw—pt+i^ • • • =£*+«+i—pt+8 = d we evidently have s ^ d 
(since the integers #, # + i , • • • , x+xd—x(d+l) can not all be 
primes). Hence we obtain from (8) that 

m - r ^ 1 + 2 + • • • + [c2 log pm] < (c% log pm)2 

or 
2 1/2 2 

W = Tr(pm) ST + (c2 log pm) S Pm + (c2 log pm) 

which contradicts (5), and completes the proof of the lemma. 
Now we can prove Theorem 1. Since, for a > 0 , i > 0 , ((at+bt)/2)1/t 

is an increasing function of t, it suffices to prove (3) if / is a negative 
integer not greater than —2, say / = — Z. Let pk-i, pk, pk+i satisfy (6) 
with A <l/2l2. Then we show that they also satisfy (3). Put pk — pk-i 
= u; since ((at+bt)/2)1/t is an increasing function of a and b it will 
clearly be sufficient to show that (3) is satisfied in case pk+i—pk 
— w+1. Thus we have to show that (£= — Z=S —2) 

'fa - uyi + (pk + u + i)- Y1" 
> pk 

or 

or 

/(fr - «Q-1+(fr+ «+!) -V 

(** - ufl + (pk + u + 1) * < 2#*1 

(pk + u + l)l(2(pk - u) - #1) > ƒ>*(ƒ>* - n)1. 

Now clearly for u <p\/2/2l2 

l 2-1 | I 1-1 / Z \ 2 Z-2 , 

ƒ>* — Ulpk < (pk — U) < pk — Ulpk +\ 0 ) U Pk + 
(9) 

< p\- (ul- l/2)pl
k~\ 

Thus it suffices to show that 

(pi +(u+ îyp^ipl - 2ulpV) > p\(p\ - (ul - l/2)pï\ 
or 
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(I - l/2)p\ X > 2fu(u + l)p\ \ 

which is clearly satisfied for u<p\/2/2l2, which proves (3). 
Now we prove (4). Assume that pk-i, Pk> pk+i satisfy (7) with 

A <l/2t2. Put pk+i—pk~u. As before it suffices to consider the case 
pk—pk-i—u + 1 and t*z2. Then we have to show that 

(pk - (« + 1))' + (pk + u) * - 2pt < 0. 

We have as in (8) for u<(l/2t2)p\/2 (t^2) 

(10) (pk + u) < pi + (tu + \/2)pk"\ 

Thus from (8) and (9) 

(pk - (* + 1))' + (pk + u)f - 2p\ < 2pl - ((u + 1)̂  - l/2)pTX 

+ (ut + l/2)pk"
1 - 2pi < 0, 

which proves (4) and completes the proof of Theorem 1. 

THEOREM 2. Leta\<a%< • • -be an infinite sequence of integers which 
do not form an arithmetic progression from a certain point on. Let 
t<\ and ak<k2/4(l—t)—ck, for every c if k is sufficiently large. Then 

(11) ((aLi + ak+1)/2)lft > ak 

have infinitely many solutions. 

THEOREM 3. Let ai<a%< • • • be an infinite sequence of integers 
which do not form a convex sequence from a certain point on (that is, 
ak—ak-i>ak+i—ak has infinitely many solutions). Let t>l and 
ak<k2/4:(l —t) —ckfor every c if k is sufficiently large. Then 

(12) ((aLi + ak+1)/2)lft < ak 

has infinitely many solutions. 

The inequalities in both theorems are best possible in the following 
sense: For every c there exists a sequence ai<#2< • • • of integers 
with ajfe<&2/4(l— /)— ck for all k, the a's not forming an arithmetic 
progression from a certain point on, and so that (11) has only a finite 
number of solutions. The same holds for (12). 

REMARK. It follows from (S) and our lemma (in §2) that Theorem 
1 is a consequence of Theorems 2 and 3. 

We prove Theorem 2 only in the special case t = 0 ; the proof of the 
general case and that of Theorem 3 is similar but requires slightly 
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longer calculations. I t is well known that for / = 0 the left side of (11) 
becomes (dk-idk+i)1/2. Thus we have to prove that if dk<k2/4 — ck for 
every c if k is sufficiently large, then 

2 

(13) dk-idk+i > au 

has finitely many solutions. 
Suppose this is not true. Then for k0<k, dk-v dk+itkd\. Since the 

a's do not form an arithmetic progression from a certain point on, 
it is clear that the equation dk+2 —dk+i>dk+i~-dk has infinitely many 
solutions. Put dk+i—ah—x] we have ajfe+2s£aA?+2# + l. Thus since 
ûjt+i è (ik - (ik+2 we have 

(14) (dk + x)2 è ak(<tk + 2x + 1), or x2 è 0*> 

Assume now that, for some k>kot (dk+i~ dk)2 <dh. Determine the 
least l>k for which di+i — di>di—di^i. Then we have from (14) 

(ak+i — ak)
2 â (di — 0*-.i)2 ^ aj-i ^ 0* 

an evident contradiction. But this means that, for k>ko, (dk+1 — dk)2 

^dk. Thus we clearly obtain that for large enough n the number of 
a's in the interval (w2, (n+1)2) (where n2 is counted in the interval 
but (n+1)2 not) does not exceed 2. Thus we evidently have a&>fe2/4 
— ck for sufficiently large c, an evident contradiction. This completes 
the proof. The sequence n2, n(n+l) with an arbitrary finite set added 
to it shows that the result is best possible. 

3. Analytical proof. Now we give an alternative proof of (2) which 
uses deeper tools. We use the prime number theorem for arithmetic 
progressions in the form given by A. Page8 

I 1 rx dy \ 

I 4>(k)J 2 log y I 

x / log x \ 
< «^(exp ( - «.(log «)»/•) + — e x p { - « , ^1 / 2 ( l o g h)t) 

where T(X, k, I) denotes the number of primes not exceeding x which 
are congruent to / (mod k) (we assume (k} I) = 1) and «i, • • • are in
dependent of x, k and /. We also need the following result due to 
Kusmin:4 Let ft, ft, • • - , ft be real and p g f t — f t â • • • ^ f t — f t - i 
g l - y ( 0 ^ g l / 2 ) . Then 

8 A. Page, Proc. London Math. Soc. (2) vol. 39 (1935) pp. 116-141. 
4 R. O. Kusmin, Zhurnal Leningradskoe Fiziko-Matematicheskoe obshchestvo 

vol. 1 (1927) pp. 233-239. 
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We are going to show that for sufficiently large x there exist primes 

(17) x g pk-i < ph < pk+i ^ 4* so that pk+i - pk < pk - pk-u 

Suppose (17) is not satisfied. Let x be sufficiently large, and consider 
the primes 

(18) 
Pi < *S Pi+l < • • • < pj+H £2X< pj+H+l < • • « 

< Pi+H+E û 4ff. 

Since we assume that (17) is false, we have 

(19) pj+2 — Pj+i S p2+* -" Pi+2 < * ' * < Pj+H+E — pj+H+B-1* 

We evidently have 

(20) ^+r+i - pj+r < (3/2) log x iovr £ H. 

For if not, then, by (19), 7r(4x)~7r(2^)=£<(4^/3 log * ) + l which 
contradicts the prime number theorem. 

Put 

y«J+l 

where (40 log x)~l<y<(\2 log x)~K We have by (20) 

1 

20 log x 
< y(p, + i ^ ) < T 

Thus from (16) 

(21) | S(y) I < 20 log x. 

Let q be any prime satisfying 12 log x<q<4t0 log x (such a g exists 
for sufficiently large x). We evidently have 

(22) ( 1 \ I «-1 

— ) = 2>2lW,E'i 

where the prime indicates that the summation is extended over the 
pyzsl (mod q) with j+1 ^v^j+H. We have by (IS) 

(23) 
Q - M % 

PJ+H dy 

Q ~ l ^ p y + i l o g ^ 
< ofsff exp I — «4 ( • 

(log x)1"1 

(log log a;) 

Thus from (23) and (22) 
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! / 1 \ 1 rmH dy \ ( (log x)1'2 \ 
51 — J I < oczxq exp I — ce4 ). 

I \ q J q - 1 J Pj+1 log y | \ (log log x)2/ 
We have from the prime number theorem pj+i<1.01x, pj+H>l-99x. 
Thus 

(24) 

|s(±\|>_!_f,-~.*>l 
I \ g / | 40 log » J i.oi» logy 

/ dog xyi* \ l x 
— a5# log x exp I — «4 J > 

P \ (log log xyj 80 (log x 
which contradicts (20) and proves (16). Hence (2) follows immedi
ately since, as remarked in the introduction, pk+i~ pk> pk—pk-i has 
(trivially) infinitely many solutions. 

4. Problems and conjectures. In connection with the Riemann 
hypothesis the question arose how often the expression 

2 
pk~lpk+l ~ pk 

changes its sign. We can show by using Brun's method that for k ^n 

(25) (ùz±ù»y_h 

changes its sign en times (as remarked before if £ = 0, (25) becomes 
pk-ipk+i-pl). 

The inequalities (2) can be stated as follows : The inequalities 

Pn+l ~ Pn Pn+l ~" pn 

> 1 and < 1 
Pn — Pn-l Pn ~" pn-l 

have infinitely many solutions. By Brun's method we can show that 

pn+1 - Pn Pn+l ~ Pn 
lim sup > 1 and lim mf < 1. 

Pn ~ Pn-l Pn ~ pn-l 

It is very probable that the lim sup is infinite and the lim inf is 0. 
(2) can be generalized as follows: Let ]Qb-iö*#jfe t>e any linear form. 

What is the necessary and sufficient condition that both inequalities 
n n 

(26) ]£ ak%k > 0 and £) a*x* < ° 

have infinitely many solutions in consecutive primes pu+i, • • • , 
pu+n? From the prime number theorem we obtain the necessary 
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condition XX-i /^^O. But ^2—^1 shows that this condition is not 
sufficient. Pólya remarked that if (25) has infinitely many solutions 
we can not have a i^O, #1+02 sè 0, • • • , # i+#2+ • • • +an^0t The 
characterization of the forms which satisfy (26) seems a difficult prob
lem. 

Finally we mention two more questions: 
(1) Cantheinequal i t ies^ n +i-^n<^n+2-^n+i< • • • <pn+k—pn+k~i 

have infinitely many solutions for every fixed k ? 
(2) Is it true that the number of solutions of pk+i—pk>pk-~pk-i, 

k^nis n/2+o(n) ? As we already have stated we can show that the 
number of solutions in question is between an and (1 — Ci)n. 

SYRACUSE UNIVERSITY AND 
UNIVERSITY OF BUDAPEST 

ON MERSENNE'S NUMBER Mm 
AND COGNATE DATA 

H. S. UHLER 

When p equals one of the 55 primes 2, 3, 5, • • • , 257 then, strictly 
speaking, Mp — 2p — 1 is called a Mersenne number. To obtain a clear 
perspective of the history of this special subject the reader may con
sult the interesting accurate paper by R. C. Archibald.1 Without 
any superior value of p, it has been shown by E. Lucas that the 
prime or composite character of a number of the form 2P — 1 (p prime) 
may be investigated by employing the sequence 3, 7, 47, 2207, • • • 
when p is of the form 4n — l, and the sequence 4, 14, 194, 37634, • • • 
when £ = 4n + l . In both cases the law of formation of the terms is 
£*, = $*_!— 2. However, it is no longer necessary to use the 4w —1 
Lucasian series since D. H. Lehmer2 stated and proved the following 
theorem: "The number N<=*2n-~1, where n is an odd prime, is a prime 
if, and only if, N divides the (n — l)st term of the series 

Si = 4, S2 - 14, Sz = 194, • • • , Sk, • • • , 

where Sk~Sl„i — 2." This justifies the use by the present writer of 
the second progression although 227 falls in the 4w —1 class. 

Received by the editors Jul}' 7, 1947. 
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