
ON MEAN VALUES 

J. ACZÉL 

Introduction. Historical. In 1930 Kolmogoroff and Nagumo1 

proved simultaneously a fundamental theorem on mean values. In 
their definition a mean value is an infinite sequence of functions; 
M1(xi)=*Xi1M2(xuX2),Mz(xi,X2,xz)f • • • ,Mn(xu • • • , * » ) , • • • . Each 
function of this sequence has to satisfy the following conditions: 
M nix, • • • , x)~x> Mn(xi, • • • , xn) must be a continuous, (strictly) 
increasing (cf. §2) and symmetric function. The terms of this sequence 
are connected by the "associative property": (j|f* = Af*(*i, • • • , Xk)) 

Mn(Xu • • • , * * , Xjc+l, • ' ' i Xn) =* Mn(Mk, • • • , Mkf Xk+U ' • * i *n) 

(t £ n - 1, 2, 3, • • • ). 

The theorem of Kolmogoroff and Nagumo is that these conditions are 
necessary and sufficient for the existence of a continuous and (strictly) 
increasing function f(x) by which the mean value can be written in 
the form (f~~l(x) is the inverse function of ƒ(#)): 

(1) Jf»(»i, • • - ,**) = /-M I (» = 1, 2, 3, • • • ). 

In the next year de Finetti and B0rge Jessen2 extended this theo
rem for mean values of functions. De Finetti and Kitagawa8 consid
ered weighted means where besides the variables xu #2, • • • , xn also 
the weights qlt q2, • • • , qn (qi+qz+ • • - + ^ = 1) were given and 
gave the conditions for the possibility of writing them in the form 

Mn(xh • • • , xn; qh • • • , qn) = /"1[?1/(»i) H + qnf(xn)] 

(n = 1, 2, 3, • • • ) 

analogous to (1) (gi+ • • • +gw = l). 

Received by the editors July 16, 1947. 
1 A. Kolmogoroff, Sur la notion de la moyenne, Atti della R. Academia nazionale dei 

Lincei (6) vol. 12 (1930). M» Nagumo, Über eineKlasse der Mittelwerte, Jap. J. Math, 
vol. 7 (1930). 

2 B. de Finetti, Sul concetto di media, Giornale di Istituto Italiano di Attuarii vol. 
2 (1931). B. Jessen, Bemaerkinger om konvekse Funktionerog Uligheder imellem Middel
vaerdier, I; II, Matematisk Tidsskrift B (1931). Cf. also J. Horvâth, On a theorem 
of Bjrge Jessen, Norske Videnskabers Selskabs Forhandlinger vol. 20 (1947). 

8 T. Kitagawa, On some class of weighted means, Proceedings of the Physico-Mathe-
matical Society of Japan vol. 16 (1934). 
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Conditions by which a mean value defined for one definite number 
of variables can be written in the form (1) were posed first by 
Aumann4 for the case when M(xi, • • • , # „ ) is an analytic function. 
His proof uses rather intricate considerations. 

In §1 I intend to give necessary and sufficient conditions for 
the validity of (1) for means of one definite number of variables 
without supposing analyticity of M(xu • • • , xn), only continuity 
and strict monotony as before. The property which stands instead 
of Kolmogoroff and Nagumo's "associativity" will be the "bisym-
metry." This asserts that the function of n2 variables 

fafallt • ' ' i #1»; • ' • î %nl, ' ' • i %nn) 

= M[M(Xn, • • • , ffln), • • • , M(xnh • • • , Xnn)] 

does not alter if we replace #»•* by XM and vice versa. 
In §2 I show that if we drop the condition of symmetry the mean 

has the form (2) ; that is, without giving the weights we shall have 
the conditions by which a nonsymmetric mean is a weighted "Kolmo-
goroff-Nagumo mean." In §3 I try to show the importance of 
the condition "bisymmetry," for by dropping also the condition 
M(x, • • • , x)=x ("reflexivity"), that is, by considering (continuous, 
increasing and) bisymmetric functions [xif • • • , xn] which are not 
means any more, we shall see that they have the form 

(3) [*1, • • • , * . ! - tHplf&l) + ' • • + Pnf(Xn) + p). 

To simplify our considerations we shall confine ourselves to mean 
values defined for two variables. This will mean no loss of generality.6 

1. Symmetric means. 

DEFINITIONS. We postulate the single-valued function of two 
variables M(x, y), a Sx, ySfi (definitions and theorem can be ex
tended without difficulty for open or half open intervals which can be 
infinite as well), to fulfill the following conditions: 

(i) Strict monotony: if x<x' then M(x, y) <M(x\ y) and the same 
for y<y'; 

(ii) Continuity; 
4 G. Aumann, Aufbau von Mitteîwerten mehrerer Argumente, II. Analytische MitteU 

wette. Math. Ann. vol. 110 (1935). 
5 For a detailed discussion in the general case of n variables for symmetric means, 

cf. J. Aczél, The notion of mean values, Norske Videnskabers Selskabs Forhandlinger 
vol. 19 (1946).—For special simplifications in the case « « 2 see J. Aczél, On mean 
values and operations defined for two variables, Norske Videnskabers Selskabs For
handlinger vol. 20 (1947). 
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(iii) Bisymmetry: ^(#11, #12, #21, #22) = M[M(xn, #12), M(x2i, #22)] 
z=M[M(xnx2i)f M(xi2, ^22)] ; 

(iv) Reflexivity: M(xt # ) = # ; 
(v) Symmetry: M(x, y)~M(y, x). 
(i) and (iv) imply x<M(x, y) <y if x<y ("internnessw). 
Generalizing (iii) we can define the "i-symmetry." We consider 

the following sequence of functions: 

^i(#i, #2) = M(xi, x2), 

^(#11, #12, tf2i, #22) = M[M(XU, #12), M(#2i, #22)], 

^ s ( # l l l » #112, #121, #122, #211, #212, #221, #222) 

= M{M[M{XHI1 #112), M(#m, #i22)],Af[M(#2ii, #212), Af(#22i, #222)]}, 

(ypk is a function of 2h variables). M(x, y) is "^-symmetric" if \pk does 
not alter by changing variables, the indices of which are permuta
tions of each other. By applying (iii) repeatedly we see that every 
bisymmetric function is k-symmetric. 

We call M(x, y) "4-symmetric in the stronger sense" if the function 
yph is symmetric in its 2* variables. We can see that every symmetric 
and bisymmetric function is k-symmetric in the stronger sense. 

THEOREM. Conditions (i), (ii), (iii), (iv), (v) are necessary and 
sufficient for the existence of an increasing and continuous function 
f(x)(a£x£P) by which M(xf y) has the form 

(4) M(#, y) = t l [ 1. 

The necessity of the conditions is evident. We prove the sufficiency 
by constructing ƒ (#) resp. its inverse function <t>(x) =/~1(^)« This func
tion has to be increasing, continuous and has to satisfy the functional 
equation (u «ƒ(#), v ~f(y)) : 

(5) l f [ * ( « ) , * W ] - # ( 2 ^ ) . 

We define <£(#) for the dyadic fractions as follows: 

0(0) - r?} - a, 0(1) - r[0) - ft 

0(0) - ro1} - M(a, a) » a, 0(1/2) - rJX) - Jf («, 0), 

0(1) - r? - M(fi, ft - fi; 
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(6) /2# + 1\ (fc+i) <*> (*) 

0(#) is increasing in consequence of (i). 
Substituting the recursive formula (6) repeatedly in the expression 

of r£+1 we get finally a \f/k+i in which only jS's and a's figure as 
variables. We assert that the number of jS's is exactly p. This can 
be proved by induction, because it is true for & = 0, 1 and if we sup
pose that in the fa representation of rfp the number of /3's is q, 
then, for example, in r ^ =* Jlf(rJ*\ r ^ ) this number must be 22+1. 
Similarly in the fa+i of M(rj*\ r$) the number of j8's is 2i+2** And 
so it follows from the "^-symmetry in the stronger sense" that 
M<r«> rj»)*M(r$9 r$) if 2i+22 = 2i'+22'. Especially if 2i+22 
= 2q+s ( s - 0 or 1) then M(rj», r» ) = r*++V 

This enables us to show that for our dyadic fractions, <j>(x) satisfies 
the functional equation (5). In fact, if we consider u=*qi/2k

f v 
= 22/2* (21+52-25+5; 5 = 0 or 1) (u+v)/2 = (2q+s)/2*+\ 

Mim, *«] - *[*(fï). *(f;)] - *<'?. '?> 
(7) 

= ilf(ra+„ r«. ) - r2q+8 - ^ _ — J " * ^ ~ £ — j -

As the dyadic fractions are everywhere dense in the interval (0, 1) 
and <£(#) is monotonous on this set there exists a right and a left limit 
in every point of the interval (0, 1). We have to prove that they can 
not be different. For suppose on the contrary yi—<t>(x — 0) <</>(x+Q) 
=^2 then by the "internness" yi < M » M(yu ^2) <yi and we can choose 
€ so that 

(8) yx + € < M < y% - e. 

By (ii) there exists a 5 for which whenever | yi—y/ | <8, j y2—yi | <i 

(9) M - € < M' - Jf(y/, y2') < M + €. 

We can choose y/ =<£(2i/2*), y2' =0(22/2*) with s-( î i+at) /2*+ l>*, 

*(s) - M[*(?i/2*), *(22/2*)] - M(y/, yi) 

= Af' < If + c < y2 « 4>(x + 0), 
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by (7), (8), (9) in contradiction with the monotony of 0(#) and thus 
<t>(x) is continuous. It follows immediately that </>(x) satisfies (5) in 
every point 0 Sx ^ 1 and so we constructed <£(#) ~f~l(x) and thus our 
theorem is proved. 

The function f(x) just constructed is not the only one which 
satisfies (4). We can see immediately that every g(x) — af(x)+b satis
fies (4) too—but no other function. Because if 

f ly ) - g H ); ƒ(*) « «. f (y) - v, 

This is Jensen's equality for the function gf~l(t), satisfied only by 
gf" l(/) afl /+i, g(x)=af(x)+b* The f(x) we constructed is deter
mined by f (a) = 0, ƒ (/J) = 1. 

2. Nonsymmetric means. 

THEOREM. If the function of two variables M(x, y) satisfies the fol
lowing conditions (cf. §1) (a Sx, y S fi)'. 

(i') Strict monotony; 
(ii') Continuity; 
(iii') Bisymmetry; 
(iv') Refiexivity, 

then and only then there exists a continuous increasing function f (x) and 
a real number 0<p<\ by which Mix, y) has the form (p+q — 1): 

(io) M(x, y) - tl\Pfi*) + qf{y)l 
The necessity of the conditions is evident. To prove the sufficiency 

we construct a symmetric mean m(x, y) satisfying the conditions (i), 
(ii), (iii), (iv), (y)ot §1 so that m(*f y)=tl{(f{x)+f{y))/2) and we 
shall show that this ƒ (x) figures in (10). 

We obtain m(x, y) as the limit of the following process: 

*o = min (x,y) $Jo = max (x,y)} 

£i=min [M(x, y)t M(y, x)], yi=max \M(x, y), M(y, x)]} 

(11) , 
Sn+^min [M(Xn, $>«), M{%, £n)], 5Wi=max [M(#n, %), M(yn, *»)], 

6 Cf. Hardy, Little wood, Pólya, Inequalities, Cambridge, 1934, p. 74. 
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The sequences xn and yw are monotonous and bounded and so they 
have limits £ = limA.»a»£n» 7? = limnH.oo5'n. £ = i?, for (from §1) M(x, y) is 
^-symmetric (in the weaker sense) and thus if, for example, £<r/ 

£ = lim xn+i = limmin [M(xn, yn), M{%> ffn)] 

« m i n [If fen), M(v, £)]>!; 

that is, r = £ = 77 = lim #„ = lim yn — mty, y). Also we see now that 

ni(x, y) = lim xn = lim y»; x0 - x, y0 = y; 

(12) ffi = Af(#, y), yx = Af(3;, #); • • • ; 

xn+i = M(xny yn), y«+i = ^ (^n , xn)\ • • • . 

We prove that this ra(#, y) is a mean value satisfying the conditions 
(i), (ii), (iii), (iv), (v) of §1. (iv) and (v) is fulfilled evidently by (11). 
To prove (i), (ii), (iii) let us consider first the function 4>{t\ x, y) 
= M[M(ty x), M(y, t)]\<j>{t\t, t)~t. <j>(t; x, y) is increasing and con
tinuous in t, x, y. 

4>(f; x, y) = 4>[t) M(x, y), M(y, x)] = $(*; *i, yi) = • • • 

- <K*; *n, yn) = • • • = <K*; r% T) 

= 0[/;m(^, y), m(xf y)] 

because M(xt y) is ^-symmetric (in the weaker sense). So the func
tional equation t~<t>{t\ x, y) is equivalent with 

(13) t = 4>(t; r, r) = <j>[t\ tn(x, y), m(x, y)]. 

(13) is satisfied by / = r = m(x, y) and this is its only solution, because 
if, for example, t<r would be a solution too, £=<£(/; xt y) =0 ( / ; r, r) 
><t>(t;tyt)=t. This is absurd! 

Now we prove (i): if x'>x then, in (12), x{ >#i , y{ >yu * # * » *n 
>#n, yn >y n , • • • , t'^t. But / ' = / is impossible, because from V — t 
and (13), / = /'=<£(/'; a;7, y) =<£(/; x', y) ><K*î#> y)=£. This is absurd, 
and thus m{x, y) is increasing: tn(x',y)>in(x, y). The continuity (ii) 
can be proved as follows: Let £(n) be an increasing sequence converg
ing to x, rj(n) one converging to y. The sequence r (n) = ra(£(w), i7(w)) be
ing increasing and bounded converges too: r^—ïf. If we take the 
limit of r ( w ) =0(r ( n ) ; £<n>, rjM) we have f=<i>(j\ x, y). This is only 
possible if T = T = in(xt y). This and (i) gives (ii). Also the bisymmetry 
(iii) follows easily from (13) and the fe-symmetry of M(x, y). (iii) can 
be deduced also from the equation (15). Thus 

(14) m(xt y) = f~H J 
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by the Theorem of §1. Here f(x) is increasing continuous, and 
ƒ(«)-<>,ƒ <fl)-l. 

We show that this is the f(x) which figures in (1). We prove first 

(15) M[m(xih xu), m(x2h x22)] = m[M(xlh xn), M(xi2, x22)] 

or with another notation: M[m(x, y), m(uf v) ] = m [M (x, u), M(y, v)]. 
This is a consequence of (12) and the ^-symmetry of M(x, y). We 
write: 

M (xo, u0) = M (x, u) « s = so, M(y0t v0) = M (y, v) = t = /0, 

M(xlt Ui)~M[M(x, y), M(u, v)] - M [M (x, u), M(y, v)]~M(s, t) = slf 

M(yh vt) - M(f, s) « tu 

M(xni Un) « J f f o ^ i , ^ i ) » 5W, I f ( y n , Vn) = Af(/n-1, *n-l) » /n, 

M[m(#, y), tn(u, v)] = w($, /) » m[M(#, «), Jlf(^, *>)] 

(tn(x, y) =lim o?n=lim ;y«, m{u, v) =lim wn=lim »n, m(s, t) =lim $«=lim /w). 

Substituting (14) into (15) and writing f{M\f-KÇ), f~l(v)]\ 
— (̂£> v) we have :7 

jf (yu i /Z faO+A^X tJf(*n)+f(x22)\\ 

M f/[lf(*ii. *»Q] + /[M(*it, *22)]) 

/ Zll + Zi2 021 + 222 \ ^O&ll» *2l) + F(%12> Z22) 

\ 2 ' 2 / 2 

(f(x)~z). This is Jensen's equality8 for functions of two variables, 
the only solution of which is the linear function ƒ {JlfJ/1"1^),/"K1?)]} 

/[tf(*,y)]-M*) + tf(j» + ' 
(£=ƒ(#), y^fiy)). If we put here^=y = a we have r = 0; if #=;y=j8, 
^ + g = l . (By^=q,y^ i 8, / [Mfai8) ]= g andby^^i8 ,y«a , / [M(/ î , a ) ] 

7 Cf. Aumann, Konvexe Funktionen una die Induktion bei Ungleichungen zwischen 
Mittelwerten, Bay» Akademie der Wissenschaften, Munich, Sitzungsberichte (1933). J. 
Aczél, A generalization of the notion of convex functions, Norske Videnskabers Selskabs 
Forhandlingen vol. 19 (1946). 

8 Cf. Hardy, Littlewood, Pólya, Inequalities, pp. 79-60. 
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=£. ) Thus 

M(x, y) - ƒ-»[*ƒ(*) + qj(y)] (p + q - 1) G-*./). 

Together with ƒ(#) evidently every g(#) ~af(x) +b satisfies (10) too. 
These are the only solutions as m(xt y) is uniquely defined by M(x, y) 
(11) and we have seen in §1 that af(x) + 6 is the most general function 
satisfying (14). The weight p is uniquely defined by (10) because if 
(p+q=r+s = l): 

^ [#ƒ(*) + qf(y)] - r l[ '*(*) + *«(y)L » - *(*) - «/W + »• 
/ w - b\ 

«/ƒ(*)+og/(y)=ar/(*)+6r+ö5/(y)+65 — 6 and thus £ = r, g = 5. 

3. Bisymmetric functions. 

THEOREM. If a function of two variables which we shall write [x, y] 
is (a£x9 y^jS; a g [#, y]^j8): 

(i") Increasing; 
(ii") Continuous; 
(iii") Bisymmetric: [[zn, 212], [221, 222]] = [[*ii, 221], [212, 222]], 

tóe» awd 0»/y /feew /Aere e#i*5to a» increasing continuous function f(x) 
and three real numbers r, s, t, by which 

(16) [*,y]-ri[rf(*) + *f(y) + tl 
We prove the theorem by constructing a mean value (§2) M(xt y) 

—jf""1 {/>ƒ(*) +<Z/60} a n d by showing that this is the ƒ (a:) which figures 
in (16). 

We see from (i") and (ii") that the function F(z) « [2, 2] is continu
ous and increasing. The functions F~l(z) and F2(z) ~F{F(Z)} 
= [[z> *L [&> A\ are, also. We prove that the function z~M(x, y) 
= F~l(\x, y]) is a mean value which satisfies the conditions (i'), 
(ii'), (Hi')» (iv') of §2. In fact, (i') and (ii') follow from (i") and 
(ii"); as for (iv'): M(z, 2) = ]^1([*, 2]) = ^ -^(2 ) =2. We have to 
verify yet (iii'). We write: 

[211, 212] « [21, 21], zx = M(zu, 212), [211, 221] = [21, Ii] , 21 = M(211, 221), 

[22I1 222] = [22, 22], 22 = M(221, 222)1 [212, 222] = Dfo» 22], 22 — M(212, 222), 

[21, 22] = [2, 2], 2 - M(2i, 22) = M{M(znt 212), M(22i, 222)}, 

[Si, 22] = [5, 2], 2 = M(2i, 22) = M{ilf(2u, 22l), Af(2i2, 222)}. 

By applying (iii") repeatedly we have 2 = 5, because 
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F2(z) = [[z, z], [z, z]] = [[zi, z2], [zh z2]] = [[«1, *i], [22, 22]] 

= [[«11,212], [221,222]] = [[211,221], [212,222]] = [[21,21], [22,22]] 

- [[*l,*l]. [21,22]] - [[*,*]. [z,z]] -F*(*), 

M {Jf(*ii, 2i2), M(22l, 222)} - 2 = 2 « Af {M(2H, 221), M(2i2, 222)}. 

Thus we have by the theorem of §2 : [x, y ] = F{ M(X, y)} = Ff*1 {pf(x) 
+qf(y)} =*{pf(x)+qf(y)} OK*) - / « * ) ) . 

We substitute this result into [[x, y]f [x, y]]=[[#, x], [y, y]] 
(this follows from (iii")), 

MMPAX) + gf(y)}) - #(*/¥ƒ(*) + «W(y)). 
If we write f\p(z) = h(z) ;f(x) = w, f(y) = z; we have h(pu+qv) = ph(u) 

+qh(v). This is Jensen's equality9 and hence fyiz) ~h{z) = coz+t 
(<o, / are constants) 

ƒ([*. y]) = «{#ƒ(*) + if(y)} + * - 'ƒ(*) + tf(y) + ' Q^.D. 

As the Af(#, y) is uniquely determined by [x, y], all functions 
g(x) satisfying (16) have the form g(x) = af(x)+b. The "weights" r, 5 
are defined uniquely by M (x, y) but t is not. For ilf~l{rf(x) +sf(y) +t) 
!=g''1(pg(x)+<rg(y)+T), w = g(z)=*af(z)+b, z = g~l{w) =f~l((w-b)/a) 
then arf(x) + asf(y) +at~apf(x) + bp + acrf(y) +b<r+T—b and thus 
p — r, cr — s, r = a/+6(l— p—<r) *=at+b(l--r — s). If r+s^l we can 
choose b so that r = 0, namely b — at/(r+s--1). Hence for <l>(x)=f(x) 
+t/(r+s — l) and for every ^(#) ~a<j>(x) (and only for them) : 

(17) [x, y] = r 1 W(*) + **(y)} H ^ 1). 

If [#, 3>]=# o y satisfies instead of (iii") the stronger conditions 
x o (y o z) = (x o y) o z and # o y=y o #, that is, if x o y is an increas
ing continuous, "associative, and commutative operation"10 we have, 
by putting, in (16), r = s = l, from (17), the following corollary. 

COROLLARY. Every increasing, continuous, associative, and commuta
tive operation has the form 

(18) xoy=f-i{f(x)+f(y) + t} - *~l{*<*) +#(y)}-

BUDAPEST, HUNGARY 

9 Hardy, Littlewood, Pólya, Inequalities, p. 74. 
10 This associativity has naturally nothing to do with the associativity defined for 

mean values by Kolmogoroff and Nagumo quoted in §1. 


