ON MEAN VALUES

J. ACZÉL

Introduction. Historical. In 1930 Kolmogoroff and Nagumo ${ }^{1}$ proved simultaneously a fundamental theorem on mean values. In their definition a mean value is an infinite sequence of functions: $M_{1}\left(x_{1}\right)=x_{1}, M_{2}\left(x_{1}, x_{2}\right), M_{3}\left(x_{1}, x_{2}, x_{3}\right), \cdots, M_{n}\left(x_{1}, \cdots, x_{n}\right), \cdots$ Each function of this sequence has to satisfy the following conditions: $M_{n}(x, \cdots, x)=x, M_{n}\left(x_{1}, \cdots, x_{n}\right)$ must be a continuous, (strictly) increasing (cf. §2) and symmetric function. The terms of this sequence are connected by the "associative property": $\left(M_{k}=M_{k}\left(x_{1}, \cdots, x_{k}\right)\right)$

$$
\begin{array}{r}
M_{n}\left(x_{1}, \cdots, x_{k}, x_{k+1}, \cdots, x_{n}\right)=M_{n}\left(M_{k}, \cdots, M_{k}, x_{k+1}, \cdots, x_{n}\right) \\
\\
(k \leqq n=1,2,3, \cdots) .
\end{array}
$$

The theorem of Kolmogoroff and Nagumo is that these conditions are necessary and sufficient for the existence of a continuous and (strictly) increasing function $f(x)$ by which the mean value can be written in the form $\left(f^{-1}(x)\right.$ is the inverse function of $\left.f(x)\right)$:

$$
\begin{equation*}
M_{n}\left(x_{1}, \cdots, x_{n}\right)=f^{-1}\left(\frac{f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)}{n}\right)(n=1,2,3, \cdots) \tag{1}
\end{equation*}
$$

In the next year de Finetti and Børge Jessen ${ }^{2}$ extended this theorem for mean values of functions. De Finetti and Kitagawa ${ }^{8}$ considered weighted means where besides the variables $x_{1}, x_{2}, \cdots, x_{n}$ also the weights $q_{1}, q_{2}, \cdots, q_{n}\left(q_{1}+q_{2}+\cdots+q_{n}=1\right)$ were given and gave the conditions for the possibility of writing them in the form

$$
\begin{align*}
M_{n}\left(x_{1}, \cdots, x_{n} ; q_{1}, \cdots, q_{n}\right)=f^{-1}\left[q_{1} f\left(x_{1}\right)+\cdots\right. & \left.+q_{n} f\left(x_{n}\right)\right] \tag{2}\\
& (n=1,2,3, \cdots)
\end{align*}
$$

analogous to (1) ($q_{1}+\cdots+q_{n}=1$).

[^0]Conditions by which a mean value defined for one definite number of variables can be written in the form (1) were posed first by Aumann ${ }^{4}$ for the case when $M\left(x_{1}, \cdots, x_{n}\right)$ is an analytic function. His proof uses rather intricate considerations.

In §1 I intend to give necessary and sufficient conditions for the validity of (1) for means of one definite number of variables without supposing analyticity of $M\left(x_{1}, \cdots, x_{n}\right)$, only continuity and strict monotony as before. The property which stands instead of Kolmogoroff and Nagumo's "associativity" will be the "bisymmetry." This asserts that the function of n^{2} variables

$$
\begin{aligned}
\psi_{2}\left(x_{11}, \cdots, x_{1 n} ; \cdots ;\right. & \left.x_{n 1}, \cdots, x_{n n}\right) \\
& =M\left[M\left(x_{11}, \cdots, x_{1 n}\right), \cdots, M\left(x_{n 1}, \cdots, x_{n n}\right)\right]
\end{aligned}
$$

does not alter if we replace $x_{i k}$ by $x_{k i}$ and vice versa.
In §2 I show that if we drop the condition of symmetry the mean has the form (2); that is, without giving the weights we shall have the conditions by which a nonsymmetric mean is a weighted "Kolmo-goroff-Nagumo mean." In §3 I try to show the importance of the condition "bisymmetry," for by dropping also the condition $M(x, \cdots, x)=x$ ("reflexivity"), that is, by considering (continuous, increasing and) bisymmetric functions $\left[x_{1}, \cdots, x_{n}\right]$ which are not means any more, we shall see that they have the form

$$
\begin{equation*}
\left[x_{1}, \cdots, x_{n}\right]=f^{-1}\left\{p_{1} f\left(x_{1}\right)+\cdots+p_{n} f\left(x_{n}\right)+p\right\} . \tag{3}
\end{equation*}
$$

To simplify our considerations we shall confine ourselves to mean values defined for two variables. This will mean no loss of generality. ${ }^{5}$

1. Symmetric means.

Definitions. We postulate the single-valued function of two variables $M(x, y), \alpha \leqq x, y \leqq \beta$ (definitions and theorem can be extended without difficulty for open or half open intervals which can be infinite as well), to fulfill the following conditions:
(i) Strict monotony: if $x<x^{\prime}$ then $M(x, y)<M\left(x^{\prime}, y\right)$ and the same for $y<y^{\prime}$;
(ii) Continuity;

[^1](iii) Bisymmetry: $\psi_{2}\left(x_{11}, x_{12}, x_{21}, x_{22}\right)=M\left[M\left(x_{11}, x_{12}\right), M\left(x_{21}, x_{22}\right)\right]$ $=M\left[M\left(x_{11} x_{21}\right), M\left(x_{12}, x_{22}\right)\right]$;
(iv) Reflexivity: $M(x, x)=x$;
(v) Symmetry: $M(x, y)=M(y, x)$.
(i) and (iv) imply $x<M(x, y)<y$ if $x<y$ ("internness").

Generalizing (iii) we can define the " k-symmetry." We consider the following sequence of functions:

```
\(\psi_{1}\left(x_{1}, x_{2}\right)=M\left(x_{1}, x_{2}\right)\),
\(\psi_{2}\left(x_{11}, x_{12}, x_{21}, x_{22}\right)=M\left[M\left(x_{11}, x_{12}\right), M\left(x_{21}, x_{22}\right)\right]\),
\(\psi_{8}\left(x_{111}, x_{112}, x_{121}, x_{122}, x_{211}, x_{212}, x_{221}, x_{222}\right)\)
\(=M\left\{M\left[M\left(x_{111}, x_{112}\right), M\left(x_{121}, x_{122}\right)\right], M\left[M\left(x_{211}, x_{212}\right), M\left(x_{221}, x_{222}\right)\right]\right\}\),
```

(ψ_{k} is a function of 2^{k} variables). $M(x, y)$ is " k-symmetric" if ψ_{k} does not alter by changing variables, the indices of which are permutations of each other. By applying (iii) repeatedly we see that every bisymmetric function is k-symmetric.

We call $M(x, y)$ " k-symmetric in the stronger sense" if the function ψ_{k} is symmetric in its 2^{k} variables. We can see that every symmetric and bisymmetric function is k-symmetric in the stronger sense.

Theorem. Conditions (i), (ii), (iii), (iv), (v) are necessary and sufficient for the existence of an increasing and continuous function $f(x)(\alpha \leqq x \leqq \beta)$ by which $M(x, y)$ has the form

$$
\begin{equation*}
M(x, y)=f^{-1}\left(\frac{f(x)+f(y)}{2}\right) \tag{4}
\end{equation*}
$$

The necessity of the conditions is evident. We prove the sufficiency by constructing $f(x)$ resp. its inverse function $\phi(x)=f^{-1}(x)$. This function has to be increasing, continuous and has to satisfy the functional equation ($u=f(x), v=f(y)$):

$$
\begin{equation*}
M[\phi(u), \phi(v)]=\phi\left(\frac{u+v}{2}\right) . \tag{5}
\end{equation*}
$$

We define $\phi(x)$ for the dyadic fractions as follows:

$$
\begin{gather*}
\phi(0)=r_{0}^{(0)}=\alpha, \quad \phi(1)=r_{1}^{(0)}=\beta ; \\
\phi(0)=r_{0}^{(1)}=M(\alpha, \alpha)=\alpha, \quad \phi(1 / 2)=r_{1}^{(1)}=M(\alpha, \beta), \\
\phi(1)=r_{2}^{(1)}=M(\beta, \beta)=\beta ; \tag{6}
\end{gather*}
$$

$$
\begin{align*}
& \cdots, \phi\left(\frac{2 q}{2^{k+1}}\right)=r_{2 q}^{(k+1)}=M\left(r_{q}^{(k)}, r_{q}^{(k)}\right)=r_{q}^{(k)}, \\
& \phi\left(\frac{2 q+1}{2^{k+1}}\right)=r_{2 q+1}^{(k+1)}=M\left(r_{q}^{(k)}, r_{q+1}^{(k)}\right), \cdots ; \tag{6}
\end{align*}
$$

$\phi(x)$ is increasing in consequence of (i).
Substituting the recursive formula (6) repeatedly in the expression of r_{p}^{k+1} we get finally a ψ_{k+1} in which only β^{\prime} s and α 's figure as variables. We assert that the number of β 's is exactly p. This can be proved by induction, because it is true for $k=0,1$ and if we suppose that in the ψ_{k} representation of $r_{g}^{(k)}$ the number of β 's is q, then, for example, in $r_{2 \alpha+1}^{(k)}=M\left(r_{q}^{(k)}, r_{\alpha+1}^{(k)}\right)$ this number must be $2 q+1$. Similarly in the ψ_{k+1} of $M\left(r_{a_{1}}^{(k)}, r_{a_{2}}^{(k)}\right)$ the number of β 's is $q_{1}+q_{2}$. And so it follows from the " k-symmetry in the stronger sense" that $M\left(r_{a_{1}}^{(k)}, r_{a_{2}}^{(k)}\right)=M\left(r_{a_{1}}^{(k)}, r_{a_{2}}^{(k)}\right)$ if $q_{1}+q_{2}=q_{1}^{\prime}+q_{2}^{\prime}$. Especially if $q_{1}+q_{2}$ $=2 q+s(s=0$ or 1$)$ then $M\left(r_{a_{1}}^{(k)}, r_{a_{2}}^{(k)}\right)=r_{2 a+s}^{k+1}$.

This enables us to show that for our dyadic fractions, $\phi(x)$ satisfies the functional equation (5). In fact, if we consider $u=q_{1} / 2^{k}, v$ $=q_{2} / 2^{k}\left(q_{1}+q_{2}=2 q+s ; s=0\right.$ or 1$)(u+v) / 2=(2 q+s) / 2^{k+1}$,

$$
\begin{align*}
M[\phi(u), \phi(v)] & =M\left[\phi\left(\frac{q_{1}}{2^{k}}\right), \phi\left(\frac{q_{2}}{2^{k}}\right)\right]=M\left(r_{q_{1}}^{(k)}, r_{q 2}^{(k)}\right) \\
& =M\left(r_{q+\varepsilon}^{(k)}, r_{q}^{(k)}\right)=r_{2 q+\varepsilon}^{(k+1)}=\phi\left(\frac{2 q+s}{2^{k+1}}\right)=\phi\left(\frac{u+v}{2}\right) . \tag{7}
\end{align*}
$$

As the dyadic fractions are everywhere dense in the interval $(0,1)$ and $\phi(x)$ is monotonous on this set there exists a right and a left limit in every point of the interval $(0,1)$. We have to prove that they can not be different. For suppose on the contrary $y_{1}=\phi(x-0)<\phi(x+0)$ $=y_{2}$ then by the "internness" $y_{1}<M=M\left(y_{1}, y_{2}\right)<y_{2}$ and we can choose ϵ so that

$$
\begin{equation*}
y_{1}+\epsilon<M<y_{2}-\epsilon \tag{8}
\end{equation*}
$$

By (ii) there exists a δ for which whenever $\left|y_{1}-y_{1}^{\prime}\right|<\delta,\left|y_{2}-y_{2}^{\prime}\right|<\delta$

$$
\begin{equation*}
M-\epsilon<M^{\prime}=M\left(y_{1}^{\prime}, y_{2}^{\prime}\right)<M+\epsilon \tag{9}
\end{equation*}
$$

We can choose $y_{1}^{\prime}=\phi\left(q_{1} / 2^{k}\right), y_{2}^{\prime}=\phi\left(q_{2} / 2^{k}\right)$ with $z=\left(q_{1}+q_{2}\right) / 2^{k+1}>x$,

$$
\begin{aligned}
\phi(z) & =M\left[\phi\left(q_{1} / 2^{k}\right), \phi\left(q_{2} / 2^{k}\right)\right]=M\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \\
& =M^{\prime}<M+\epsilon<y_{2}=\phi(x+0),
\end{aligned}
$$

by (7), (8), (9) in contradiction with the monotony of $\phi(x)$ and thus $\phi(x)$ is continuous. It follows immediately that $\phi(x)$ satisfies (5) in every point $0 \leqq x \leqq 1$ and so we constructed $\phi(x)=f^{-1}(x)$ and thus our theorem is proved.

The function $f(x)$ just constructed is not the only one which satisfies (4). We can see immediately that every $g(x)=a f(x)+b$ satisfies (4) too-but no other function. Because if

$$
\begin{gathered}
f^{-1}\left(\frac{f(x)+f(y)}{2}\right)=g^{-1}\left(\frac{g(x)+g(y)}{2}\right) ; \quad f(x)=u, \quad f(y)=v \\
g f^{-1}\left(\frac{u+v}{2}\right)=\frac{g f^{-1}(u)+g f^{-1}(v)}{2}
\end{gathered}
$$

This is Jensen's equality for the function $g f^{-1}(t)$, satisfied only by $g f^{-1}(t)=a t+b, g(x)=a f(x)+b .^{6}$ The $f(x)$ we constructed is determined by $f(\alpha)=0, f(\beta)=1$.

2. Nonsymmetric means.

Theorem. If the function of two variables $M(x, y)$ satisfies the following conditions (cf. §1) ($\alpha \leqq x, y \leqq \beta$):
(i') Strict monotony;
(ii') Continuity;
(iii') Bisymmetry;
(iv') Reflexivity,
then and only then there exists a continuous increasing function $f(x)$ and a real number $0<p<1$ by which $M(x, y)$ has the form $(p+q=1)$:

$$
\begin{equation*}
M(x, y)=f^{-1}[p f(x)+q f(y)] \tag{10}
\end{equation*}
$$

The necessity of the conditions is evident. To prove the sufficiency we construct a symmetric mean $m(x, y)$ satisfying the conditions (i), (ii), (iii), (iv), (v) of §1 so that $m(x, y)=f^{-1}((f(x)+f(y)) / 2$) and we shall show that this $f(x)$ figures in (10).

We obtain $m(x, y)$ as the limit of the following process:

$$
\begin{array}{ll}
\bar{x}_{0}=\min (x, y) & \bar{y}_{0}=\max (x, y) \\
\bar{x}_{1}=\min [M(x, y), M(y, x)], & \bar{y}_{1}=\max [M(x, y), M(y, x)]
\end{array}
$$

$$
\begin{equation*}
\bar{x}_{n+1}=\min \left[M\left(\bar{x}_{n}, \bar{y}_{n}\right), M\left(\bar{y}_{n}, \bar{x}_{n}\right)\right], \bar{y}_{n+1}=\max \left[M\left(\bar{x}_{n}, \bar{y}_{n}\right), M\left(\bar{y}_{n}, \bar{x}_{n}\right)\right] \tag{11}
\end{equation*}
$$

[^2]The sequences \bar{x}_{n} and \bar{y}_{n} are monotonous and bounded and so they have limits $\xi=\lim _{n \rightarrow \infty} \bar{x}_{n}, \eta=\lim _{n \rightarrow \infty} \bar{y}_{n}$. $\xi=\eta$, for (from $\S 1$) $M(x, y)$ is k-symmetric (in the weaker sense) and thus if, for example, $\xi<\eta$

$$
\begin{aligned}
\xi & =\lim \bar{x}_{n+1}=\lim \min \left[M\left(\bar{x}_{n}, \bar{y}_{n}\right), M\left(\bar{y}_{n}, \bar{x}_{n}\right)\right] \\
& =\min [M(\xi, \eta), M(\eta, \xi)]>\xi
\end{aligned}
$$

that is, $\tau=\xi=\eta=\lim \bar{x}_{n}=\lim \bar{y}_{n}=m(x, y)$. Also we see now that

$$
\begin{align*}
m(x, y) & =\lim x_{n}=\lim y_{n} ; & x_{0}=x, & y_{0}=y ; \\
x_{1} & =M(x, y), & y_{1} & =M(y, x) ; \cdots ; \tag{12}\\
x_{n+1} & =M\left(x_{n}, y_{n}\right), & y_{n+1} & =M\left(y_{n}, x_{n}\right) ; \cdots .
\end{align*}
$$

We prove that this $m(x, y)$ is a mean value satisfying the conditions (i), (ii), (iii), (iv), (v) of \$1. (iv) and (v) is fulfilled evidently by (11). To prove (i), (ii), (iii) let us consider first the function $\phi(t ; x, y)$ $=M[M(t, x), M(y, t)] ; \phi(t ; t, t)=t . \phi(t ; x, y)$ is increasing and continuous in t, x, y.

$$
\begin{aligned}
\phi(t ; x, y) & =\phi[t ; M(x, y), M(y, x)]=\phi\left(t ; x_{1}, y_{1}\right)=\cdots \\
& =\phi\left(t ; x_{n}, y_{n}\right)=\cdots=\phi(t ; \tau, \tau) \\
& =\phi[t ; m(x, y), m(x, y)]
\end{aligned}
$$

because $M(x, y)$ is k-symmetric (in the weaker sense). So the functional equation $t=\phi(t ; x, y)$ is equivalent with

$$
\begin{equation*}
t=\phi(t ; \tau, \tau)=\phi[t ; m(x, y), m(x, y)] . \tag{13}
\end{equation*}
$$

(13) is satisfied by $t=\tau=m(x, y)$ and this is its only solution, because if, for example, $t<\tau$ would be a solution too, $t=\phi(t ; x, y)=\phi(t ; \tau, \tau)$ $>\phi(t ; t, t)=t$. This is absurd!

Now we prove (i): if $x^{\prime}>x$ then, in (12), $x_{1}^{\prime}>x_{1}, y_{1}^{\prime}>y_{1}, \cdots, x_{n}^{\prime}$ $>x_{n}, y_{n}^{\prime}>y_{n}, \cdots, t^{\prime} \geqq t$. But $t^{\prime}=t$ is impossible, because from $t^{\prime}=t$ and (13), $t=t^{\prime}=\phi\left(t^{\prime} ; x^{\prime}, y\right)=\phi\left(t ; x^{\prime}, y\right)>\phi(t ; x, y)=t$. This is absurd, and thus $m(x, y)$ is increasing: $m\left(x^{\prime}, y\right)>m(x, y)$. The continuity (ii) can be proved as follows: Let $\xi^{(n)}$ be an increasing sequence converging to $x, \eta^{(n)}$ one converging to y. The sequence $\tau^{(n)}=m\left(\xi^{(n)}, \eta^{(n)}\right)$ being increasing and bounded converges too: $\tau^{(n)} \rightarrow \bar{\tau}$. If we take the limit of $\tau^{(n)}=\phi\left(\tau^{(n)} ; \xi^{(n)}, \eta^{(n)}\right)$ we have $\bar{\tau}=\phi(\bar{\tau} ; x, y)$. This is only possible if $\bar{\tau}=\tau=m(x, y)$. This and (i) gives (ii). Also the bisymmetry (iii) follows easily from (13) and the k-symmetry of $M(x, y)$. (iii) can be deduced also from the equation (15). Thus

$$
\begin{equation*}
m(x, y)=f^{-1}\left(\frac{f(x)+f(y)}{2}\right) \tag{14}
\end{equation*}
$$

by the Theorem of $\S 1$. Here $f(x)$ is increasing continuous, and $f(\alpha)=0, f(\beta)=1$.

We show that this is the $f(x)$ which figures in (1). We prove first

$$
\begin{equation*}
M\left[m\left(x_{11}, x_{12}\right), m\left(x_{21}, x_{22}\right)\right]=m\left[M\left(x_{11}, x_{21}\right), M\left(x_{12}, x_{22}\right)\right] \tag{15}
\end{equation*}
$$

or with another notation: $M[m(x, y), m(u, v)]=m[M(x, u), M(y, v)]$. This is a consequence of (12) and the k-symmetry of $M(x, y)$. We write:

$$
\begin{array}{r}
M\left(x_{0}, u_{0}\right)=M(x, u)=s=s_{0}, \quad M\left(y_{0}, v_{0}\right)=M(y, v)=t=t_{0} \\
M\left(x_{1}, u_{1}\right)=M[M(x, y), M(u, v)]=M[M(x, u), M(y, v)]=M(s, t)=s_{1} \\
M\left(y_{1}, v_{1}\right)=M(t, s)=t_{1}
\end{array}
$$

$M\left(x_{n}, u_{n}\right)=M\left(s_{n-1}, t_{n-1}\right)=s_{n}, \quad M\left(y_{n}, v_{n}\right)=M\left(t_{n-1}, s_{n-1}\right)=t_{n}$,
$M[m(x, y), m(u, v)]=m(s, t)=m[M(x, u), M(y, v)]$
$\left(m(x, y)=\lim x_{n}=\lim y_{n}, m(u, v)=\lim u_{n}=\lim v_{n}, m(s, t)=\lim s_{n}=\lim t_{n}\right)$.
Substituting (14) into (15) and writing $f\left\{M\left[f^{-1}(\xi), f^{-1}(\eta)\right]\right\}$ $=F(\xi, \eta)$ we have: ${ }^{7}$

$$
\begin{aligned}
& M\left\{f^{-1}\left(\frac{f\left(x_{11}\right)+f\left(x_{12}\right)}{2}\right), f^{-1}\right.\left.\left(\frac{f\left(x_{21}\right)+f\left(x_{22}\right)}{2}\right)\right\} \\
&=f^{-1}\left\{\frac{f\left[M\left(x_{11}, x_{21}\right)\right]+f\left[M\left(x_{12}, x_{22}\right)\right]}{2}\right\} \\
& F\left(\frac{z_{11}+z_{12}}{2},\right. \\
&\left.\frac{z_{21}+z_{22}}{2}\right)=\frac{F\left(z_{11}, z_{21}\right)+F\left(z_{12}, z_{22}\right)}{2}
\end{aligned}
$$

$(f(x)=z)$. This is Jensen's equality ${ }^{8}$ for functions of two variables, the only solution of which is the linear function $f\left\{M\left[f^{-1}(\xi), f^{-1}(\eta)\right]\right\}$ $=F(\xi, \eta)=p \xi+q \eta+r$,

$$
f[M(x, y)]=p f(x)+q f(y)+r
$$

$(\xi=f(x), \eta=f(y))$. If we put here $x=y=\alpha$ we have $r=0$; if $x=y=\beta$, $p+q=1$. (By $x=\alpha, y=\beta, f[M(\alpha, \beta)]=q$ and by $x=\beta, y=\alpha, f[M(\beta, \alpha)]$

[^3]$=p$.) Thus
$$
M(x, y)=f^{-1}[k f(x)+q f(y)] \quad(p+q=1) Q . E . D .
$$

Together with $f(x)$ evidently every $g(x)=a f(x)+b$ satisfies (10) too. These are the only solutions as $m(x, y)$ is uniquely defined by $M(x, y)$ (11) and we have seen in $\S 1$ that $a f(x)+b$ is the most general function satisfying (14). The weight p is uniquely defined by (10) because if $(p+q=r+s=1)$:

$$
\begin{aligned}
f^{-1}[p f(x)+q f(y)] & =g^{-1}[r g(x)+s g(y)], \quad w=g(z)=a f(z)+b, \\
z & =g^{-1}(w)=f^{-1}\left(\frac{w-b}{a}\right)
\end{aligned}
$$

$a p f(x)+a q f(y)=a r f(x)+b r+a s f(y)+b s-b$ and thus $p=r, q=s$.

3. Bisymmetric functions.

Theorem. If a function of two variables which we shall write $[x, y]$ is $(\alpha \leqq x, y \leqq \beta ; \alpha \leqq[x, y] \leqq \beta$):
($\mathrm{i}^{\prime \prime}$) Increasing;
(ii' ${ }^{\prime \prime}$) Continuous;
(iii' ${ }^{\prime \prime}$) Bisymmetric: $\left[\left[z_{11}, z_{12}\right],\left[z_{21}, z_{22}\right]\right]=\left[\left[z_{11}, z_{21}\right],\left[z_{12}, z_{22}\right]\right]$, then and only then there exists an increasing continuous function $f(x)$ and three real numbers r, s, t, by which

$$
\begin{equation*}
[x, y]=f^{-1}\{r f(x)+s f(y)+t\} . \tag{16}
\end{equation*}
$$

We prove the theorem by constructing a mean value (§2) $M(x, y)$ $=f^{-1}\{p f(x)+q f(y)\}$ and by showing that this is the $f(x)$ which figures in (16).

We see from ($\mathrm{i}^{\prime \prime}$) and (ii' ${ }^{\prime \prime}$) that the function $F(z)=[z, z]$ is continuous and increasing. The functions $F^{-1}(z)$ and $F^{2}(z)=F\{F(z)\}$ $=[[z, z],[z, z]]$ are, also. We prove that the function $z=M(x, y)$ $=F^{-1}([x, y])$ is a mean value which satisfies the conditions (i^{\prime}), (ii'), (iii^{\prime}), (iv^{\prime}) of §2. In fact, (i^{\prime}) and (ii') follow from ($\mathrm{i}^{\prime \prime}$) and (ii' ${ }^{\prime}$); as for (iv'): $M(z, z)=F^{-1}([z, z])=F^{-1} F(z)=z$. We have to verify yet (iii'). We write:

$$
\begin{gathered}
{\left[z_{11}, z_{12}\right]=\left[z_{1}, z_{1}\right], z_{1}=M\left(z_{11}, z_{12}\right),\left[z_{11}, z_{21}\right]=\left[\bar{z}_{1}, \bar{z}_{1}\right], \bar{z}_{1}=M\left(z_{11}, z_{21}\right),} \\
{\left[z_{21}, z_{22}\right]=\left[z_{2}, z_{2}\right], z_{2}=M\left(z_{21}, z_{22}\right),\left[z_{12}, z_{22}\right]=\left[\bar{z}_{2}, \bar{z}_{2}\right], \bar{z}_{2}=M\left(z_{12}, z_{22}\right),} \\
{\left[z_{1}, z_{2}\right]=[z, z], \quad z=M\left(z_{1}, z_{2}\right)=M\left\{M\left(z_{11}, z_{12}\right), M\left(z_{21}, z_{22}\right)\right\},} \\
{\left[\bar{z}_{1}, \bar{z}_{2}\right]=[\bar{z}, \bar{z}], \quad \bar{z}=M\left(\bar{z}_{1}, \bar{z}_{2}\right)=M\left\{M\left(z_{11}, z_{21}\right), M\left(z_{12}, z_{22}\right)\right\} .}
\end{gathered}
$$

By applying (iii') repeatedly we have $z=\bar{z}$, because

$$
\begin{aligned}
& F^{2}(z)=[[z, z],[z, z]]=\left[\left[z_{1}, z_{2}\right],\left[z_{1}, z_{2}\right]\right]=\left[\left[z_{1}, z_{1}\right],\left[z_{2}, z_{2}\right]\right] \\
&=\left[\left[z_{11}, z_{12}\right],\left[z_{21}, z_{22}\right]\right]=\left[\left[z_{11}, z_{21}\right],\left[z_{12}, z_{22}\right]\right]=\left[\left[\bar{z}_{1}, \bar{z}_{1}\right],\left[\bar{z}_{2}, \bar{z}_{2}\right]\right] \\
&=\left[\left[\bar{z}_{1}, \bar{z}_{2}\right],\left[\bar{z}_{1}, \bar{z}_{2}\right]\right]=[[\bar{z}, \bar{z}],[\bar{z}, \bar{z}]]=F^{2}(\bar{z}), \\
& M\left\{M\left(z_{11}, z_{12}\right), M\left(z_{21}, z_{22}\right)\right\}=z=\bar{z}=M\left\{M\left(z_{11}, z_{21}\right), M\left(z_{12}, z_{22}\right)\right\} .
\end{aligned}
$$

Thus we have by the theorem of $\S 2:[x, y]=F\{M(x, y)\}=F^{-1}\{p f(x)$ $+q f(y)\}=\psi\{p f(x)+q f(y)\} \quad\left(\psi(z)=F f^{-1}(z)\right)$.
We substitute this result into $[[x, y],[x, y]]=[[x, x],[y, y]]$ (this follows from (iii' ${ }^{\prime \prime}$),

$$
\psi(f \psi\{p f(x)+q f(y)\})=\psi(p f \psi f(x)+q f \psi f(y)) .
$$

If we write $f \psi(z)=h(z) ; f(x)=u, f(y)=v$ we have $h(p u+q v)=p h(u)$ $+q h(v)$. This is Jensen's equality ${ }^{9}$ and hence $f \psi(z)=h(z)=\omega z+t$ (ω, t are constants)

$$
f([x, y])=\omega\{p f(x)+q f(y)\}+t=r f(x)+s f(y)+t \text { Q.E.D. }
$$

As the $M(x, y)$ is uniquely determined by $[x, y]$, all functions $g(x)$ satisfying (16) have the form $g(x)=a f(x)+b$. The "weights" r, s are defined uniquely by $M(x, y)$ but t is not. For if $f^{-1}(r f(x)+s f(y)+t)$ $=g^{-1}(\rho g(x)+\sigma g(y)+\tau), w=g(z)=a f(z)+b, z=g^{-1}(w)=f^{-1}((w-b) / a)$ then $a r f(x)+a s f(y)+a t=a \rho f(x)+b \rho+a \sigma f(y)+b \sigma+\tau-b$ and thus $\rho=r, \sigma=s, \tau=a t+b(1-\rho-\sigma)=a t+b(1-r-s)$. If $r+s \neq 1$ we can choose b so that $\tau=0$, namely $b=a t /(r+s-1)$. Hence for $\phi(x)=f(x)$ $+t /(r+s-1)$ and for every $\psi(x)=a \phi(x)$ (and only for them):

$$
\begin{equation*}
[x, y]=\phi^{-1}\{r \phi(x)+s \phi(y)\} \quad(r+s \neq 1) . \tag{17}
\end{equation*}
$$

If $[x, y]=x \circ y$ satisfies instead of (iii') the stronger conditions $x \circ(y \circ z)=(x \circ y) \circ z$ and $x \circ y=y \circ x$, that is, if $x \circ y$ is an increasing continuous, "associative, and commutative operation" ${ }^{10}$ we have, by putting, in (16), $r=s=1$, from (17), the following corollary.

Corollary. Every increasing, continuous, associative, and commutative operation has the form

$$
\begin{equation*}
x \circ y=f^{-1}\{f(x)+f(y)+t\}=\phi^{-1}\{\phi(x)+\phi(y)\} . \tag{18}
\end{equation*}
$$

Budapest, Hungary

[^4]
[^0]: Received by the editors July 16, 1947.
 ${ }^{1}$ A. Kolmogoroff, Sur la notion de la moyenne, Atti della R. Academia nazionale dei Lincei (6) vol. 12 (1930). M. Nagumo, Über eine Klasse der Mittelwerte, Jap. J. Math. vol. 7 (1930).
 ${ }^{2}$ B. de Finetti, Sul concetto di media, Giornale di Istituto Italiano di Attuarii vol. 2 (1931). B. Jessen, Bemaerkinger om konvekse Funktioner og Uligheder imellem Middelvaerdier, I; II, Matematisk Tidsskrift B (1931). Cf. also J. Horvath, On a theorem of Børge Jessen, Norske Videnskabers Selskabs Forhandlinger vol. 20 (1947).
 ${ }^{3}$ T. Kitagawa, On some class of weighted means, Proceedings of the Physico-Mathematical Society of Japan vol. 16 (1934).

[^1]: ${ }^{4}$ G. Aumann, Aufbau von Mittelwerten mehrerer Argumente, II. Analytische Mittelwerte, Math. Ann. vol. 110 (1935).
 ${ }^{5}$ For a detailed discussion in the general case of n variables for symmetric means, cf. J. Aczel, The notion of mean values, Norske Videnskabers Selskabs Forhandlinger vol. 19 (1946).-For special simplifications in the case $n=2$ see J. Aczel, On mean values and operations defined for two variables, Norske Videnskabers Selskabs Forhandlinger vol. 20 (1947).

[^2]: ${ }^{6}$ Cf. Hardy, Little wood, Polya, Inequalities, Cambridge, 1934, p. 74.

[^3]: ${ }^{7}$ Cf. Aumann, Konvexe Funktionen und die Induktion bei Ungleichungen zwischen Mittelwerten, Bay. Akademie derWissenschaften, Munich, Sitzungsberichte (1933). J. Aczel, A generalization of the notion of convex functions, Norske Videnskabers Selskabs Forhandlingen vol. 19 (1946).
 ${ }^{8}$ Cf. Hardy, Littlewood, P6lya, Inequalities, pp. 79-80.

[^4]: ${ }^{9}$ Hardy, Littlewood, P6lya, Inequalities, p. 74.
 ${ }^{10}$ This associativity has naturally nothing to do with the associativity defined for mean values by Kolmogoroff and Nagumo quoted in $\$ 1$.

