ON THE DISTRIBUTION OF THE MAXIMUM OF SUCCESSIVE CUMULATIVE SUMS OF INDEPENDENTLY BUT NOT IDENTICALLY DISTRIBUTED CHANCE VARIABLES

ABRAHAM WALD

1. Introduction. Let X_1, X_2, \dots , and so on be a sequence of chance variables and let S_i denote the sum of the first i X's, that is,

(1.1)
$$S_i = X_1 + \cdots + X_i$$
 $(i = 1, 2, \cdots, ad inf).$

Let M_N denote the maximum of the first N cumulative sums S_1, \dots, S_N , that is,

$$(1.2) M_N = \max (S_1, \cdots, S_N).$$

The distribution of M_N , in particular the limiting distribution of a suitably normalized form of M_N , has been studied by Erdös and Kac $[1]^1$ and by the author [2] in the special case when the X's are independently distributed with identical distributions.

In this note we shall be concerned with the distribution of M_N when the X's are independent but not necessarily identically distributed. In particular, the mean and variance of X_i may be any functions of i.

In §2 lower and upper limits for M_N are obtained which yield particularly simple limits for the distribution of M_N when the X's are symmetrically distributed around zero.

In §3 the special case is considered when X_i can take only the values 1 and -1 but the probability p_i that $X_i = 1$ may be any function of *i*. The exact probability distribution of M_N for this case is derived and expressed as the first row of a product of N matrices.

The limiting distribution of $M_N/N^{1/2}$ is treated in §4. Since the interesting limiting case arises when the mean of X_i $(i \le N)$ is not only a function of *i* but also a function of *N*, we have to introduce a double sequence of chance variables. That is, for any *N* we consider a sequence of *N* chance variables X_{N1}, \dots, X_{NN} . Let μ_{Ni} denote the mean and σ_{Ni} the standard deviation of X_{Ni} . Let, furthermore, S_{Ni} denote the sum $X_{N1} + \cdots + X_{Ni}$ and M_N the maximum of S_{N1}, \dots, S_{NN} . With the help of a method used by Erdös and Kac [1], the following theorem is established in §4:

Presented to the Society, September 4, 1947; received by the editors June 27, 1947.

¹ Numbers in brackets refer to the references cited at the end of the paper.

THEOREM 1.1 Let $\{X_{Ni}\}$ and $\{X_{Ni}^*\}$ $(i=1, \dots, N; N=1, 2, \dots, ad inf.)$ be two sequences of chance variables such that the following conditions are fulfilled:

(a) The X's are independently distributed.

(b) The sequence $\{\sigma_{Ni}\}$ $(i=1, \dots, N; N=1, 2, \dots, ad inf.)$ has a positive lower bound and a finite upper bound.

(c) $\mu_{Ni}N^{1/2}$ is a bounded function of i and N.

(d) The third absolute moment of X_{Ni} is a bounded function of i and N.

(e) The conditions (a)-(d) remain valid if we replace X_{Ni} by X_{Ni}^* . (f) The equation

$$\lim_{N=\infty}\left[\frac{\mu_{N1}^*+\cdots+\mu_{Nj_i}^*}{\sigma_{N1}^{*2}+\cdots+\sigma_{Nj_i}^{*2}}\right]$$

$$-\frac{\mu_{N1} + \cdots + \mu_{Ni}}{\sigma_{N1}^{2} + \cdots + \sigma_{Ni}^{2}} \left(\frac{\sigma_{N1}^{2} + \cdots + \sigma_{NN}^{2}}{\sigma_{N1}^{*2} + \cdots + \sigma_{NN}^{*2}}\right)^{1/2} = 0$$

holds for all i and N where $\mu_{N_i}^*$ is the mean and $\sigma_{N_i}^*$ is the standard deviation $X_{N_i}^*$ and j_i is the smallest positive integer for which

$$\frac{\sigma_{N1}^{*2} + \cdots + \sigma_{Nk}^{*2}}{\sigma_{N1}^{*2} + \cdots + \sigma_{NN}^{*2}} \ge \frac{\sigma_{N1}^{2} + \cdots + \sigma_{Nk}^{2}}{\sigma_{N1}^{2} + \cdots + \sigma_{NN}^{2}}.$$

Let

(1.4)
$$\overline{M}_{N} = M_{N}^{*} \left(\frac{\sigma_{N1}^{2} + \cdots + \sigma_{NN}^{2}}{\sigma_{N1}^{*2} + \cdots + \sigma_{NN}^{*2}} \right)^{1/2}$$

where M_N^* is the same function of the X^{*}'s as M_N is of the X's. Then for any positive ϵ we have

(1.5)
$$\liminf_{N=\infty} \left[\operatorname{prob} \left\{ M_N < cN^{1/2} \right\} - \operatorname{prob} \left\{ \overline{M}_N < (c-\epsilon)N^{1/2} \right\} \right] \ge 0$$

and

(1.6) $\liminf_{N=\infty} [\operatorname{prob} \{\overline{M}_N < (c+\epsilon)N^{1/2}\} - \operatorname{prob} \{M_N < cN^{1/2}\}] \geq 0.$

The following corollary is a simple consequence of Theorem 1.1:

COROLLARY 1.1. Let N' be any positive integral valued and strictly increasing function of N for which prob $\{\overline{M}_{N'} < cN'^{1/2}\}$ converges to a limit function P(c) at all continuity points c of P(c) as $N \rightarrow \infty$. Then also

(1.7)
$$\lim_{N \to \infty} \operatorname{prob} \left\{ M_{N'} < c N'^{1/2} \right\} = P(c)$$

at all continuity points c of P(c).

The validity of Corollary 1.1 can be derived from that of Theorem 1.1 as follows: Let $c = c_0$ be a continuity point of P(c) and substitute N' for N in (1.5) and (1.6). For any positive ρ all limit points of prob $\{\overline{M}_{N'} < (c_0 - \epsilon)N'^{1/2}\}$ and prob $\{\overline{M}_{N'} < (c_0 + \epsilon)N'^{1/2}\}$ will lie in the interval $[P(c_0) - \rho, P(c_0) + \rho]$ for sufficiently small ϵ . Hence, equations (1.5) and (1.6) imply that

(1.8)

$$P(c_0) - \rho \leq \liminf_{N=\infty} \operatorname{prob} \left\{ M_{N'} < c_0 N'^{1/2} \right\}$$

$$\leq \limsup_{N=\infty} \operatorname{prob} \left\{ M_{N'} < c_0 N'^{1/2} \right\} \leq P(c_0) + \rho.$$

Since (1.8) is true for any positive number ρ , Corollary 1.1 is proved.

The result in Corollary 1.1 can be expressed also by saying that for any subsequence $\{N'\}$ of $\{N\}$ for which $\overline{M}_{N'}/N'^{1/2}$ has a limiting distribution as $N \to \infty$, also $M_{N'}/N'^{1/2}$ has a limiting distribution which is equal to that of $\overline{M}_{N'}/N'^{1/2}$.

It can easily be verified that the conditions (e) and (f) can always be satisfied for chance variables X_{Ni}^* which take only the values 1 and -1 with properly chosen probabilities. Thus, the results of §3 may be used to compute

prob
$$\left\{M_N^* < N^{1/2} c \left(\frac{\sigma_{N1}^{*2} + \cdots + \sigma_{NN}^{*2}}{\sigma_{N1}^2 + \cdots + \sigma_{NN}^2}\right)^{1/2}\right\}$$
.

2. Derivation of upper and lower bounds for M_N . Let X_1, \dots, X_N be a set of N variables and let

(2.1)
$$\tilde{X}_i = X_{N-i+1}$$
 $(i = 1, 2, \cdots, N).$

Let, furthermore,

(2.2)
$$\tilde{M}_i = \max(\tilde{X}_i, \tilde{X}_i + \tilde{X}_{i-1}, \cdots, \tilde{X}_i + \cdots + \tilde{X}_1),$$
$$(i = 1, \cdots, N).$$

Clearly

(2.3)
$$\tilde{M}_N = M_N = \max (X_1, X_1 + X_2, \cdots, X_1 + \cdots + X_N).$$

If X_1, \dots, X_N are independent chance variables, the chance variables $\tilde{M}_1, \tilde{M}_2, \dots, \tilde{M}_N$ form a simple Markoff chain, that is, the conditional distribution of \tilde{M}_{i+1} , given $\tilde{M}_1, \dots, \tilde{M}_i$, depends only

[April

on \tilde{M}_i . This is an immediate consequence of the relations:

(2.4)
$$\tilde{M}_{i+1} = \tilde{M}_i + \tilde{X}_{i+1} \qquad \text{if } \tilde{M}_i > 0$$

and

(2.5)
$$\tilde{M}_{i+1} = \tilde{X}_{i+1} \qquad \text{if } \tilde{M}_i \leq 0.$$

We shall now prove the following theorem:

THEOREM 2.1. The inequality

(2.6)
$$\widetilde{M}_i \leq |\epsilon_1 \widetilde{X}_1 + \cdots + \epsilon_i \widetilde{X}_i|$$
 $(i = 1, \cdots, N)$

holds where $\epsilon_1 = 1$, $\epsilon_i = 1$ if $\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_{i-1} \tilde{X}_{i-1} > 0$ and $\epsilon_i = -1$, if $\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_{i-1} \tilde{X}_{i-1} \leq 0$.

PROOF. Clearly, (2.6) holds for i=1. We shall prove (2.6) for i+1 assuming that it holds for *i*. For this purpose it is sufficient to show, because of (2.4) and (2.5), that

$$(2.7) \quad \left| \epsilon_1 \tilde{X}_1 + \cdots + \epsilon_{i+1} \tilde{X}_{i+1} \right| - \left| \epsilon_1 \tilde{X}_1 + \cdots + \epsilon_i \tilde{X}_i \right| \geq \tilde{X}_{i+1}.$$

Denote $|\epsilon_i, \tilde{X}_1 + \cdots + \epsilon_i \tilde{X}_i|$ by c_i . If $c_i > 0$, then $\epsilon_{i+1} = 1$ and inequality (2.7) goes over into

$$(2.8) \qquad \qquad \left| c_i + \tilde{X}_{i+1} \right| - c_i \geq \tilde{X}_{i+1},$$

which is obviously true. If $c_i \leq 0$, $\epsilon_{i+1} = -1$ and inequality (2.7) is equivalent with

(2.9)
$$||c_i| + \tilde{X}_{i+1}| - |c_i| \ge \tilde{X}_{i+1}$$

which is obviously true. Hence, Theorem 2.1 is proved.

We shall now prove a theorem giving a lower bound for M_i .

THEOREM 2.2. The inequality

(2.10)

$$\widetilde{K}_{i} = \left| \epsilon_{1} \widetilde{X}_{1} + \dots + \epsilon_{i} \widetilde{X}_{i} \right| - 2 \max_{\substack{j \leq i \\ j \leq i}} \left| \widetilde{X}_{j} \right| \leq \widetilde{M}_{i}$$

$$(i = 1, \dots, N)$$

holds where the ϵ 's are defined as in Theorem 2.1.

PROOF. Theorem 2.2 is obviously true for i=1. We shall assume that it is valid for i and we shall prove it for i+1. It follows from (2.4) and (2.5) that

Hence, to prove (2.10) for i+1 assuming that it is true for i, it is sufficient to show that at least one of the following two inequalities holds:

(2.13)
$$\tilde{K}_{i+1} - \tilde{K}_i \leq \tilde{X}_{i+1},$$

Consider first the case when $|\tilde{X}_{i+1}| \leq |\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_i \tilde{X}_i|$. In this case (2.13) always holds, as can easily be verified. If $|\tilde{X}_{i+1}| > |\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_i \tilde{X}_i|$ and $\tilde{X}_{i+1} \geq 0$, then (2.13) holds again. If $|\tilde{X}_{i+1}| > |\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_i \tilde{X}_i|$ and $\tilde{X}_{i+1} < 0$, then $|\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_i \tilde{X}_i| + \epsilon_{i+1} \tilde{X}_{i+1}| \leq |\tilde{X}_{i+1}| = |\tilde{X}_{i+1}|$ and, therefore, $\tilde{K}_{i+1} \leq |\tilde{X}_{i+1}| - 2 \max_{j \leq i+1} |X_j| \leq -|\tilde{X}_{i+1}| = \tilde{X}_{i+1}$. Thus, in this case the inequality (2.14) holds. This completes the proof of Theorem 2.2.

Since $\tilde{M}_N = M_N$, Theorems 2.1 and 2.2 yield the following limits for M_N

$$(2.15) \quad |\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_N \tilde{X}_N| - 2 \max_{i \leq N} |\tilde{X}_i|$$
$$\leq M_N \leq |\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_N \tilde{X}_N|.$$

Suppose now that X_1, \dots, X_N are chance variables such that the conditional distribution of X_i $(i=1, \dots, N)$ for any given values of X_{i+1}, \dots, X_N is symmetric around the origin. Then the probability distribution of $|\epsilon_1 \vec{X}_1 + \dots + \epsilon_N \vec{X}_N|$ is the same as that of $|X_1 + \dots + X_N|$, and the distribution of $|\epsilon_1 \vec{X}_1 + \dots + \epsilon_N \vec{X}_N|$ -2 max_{i \le N} $|\vec{X}_i|$ equals that of $|X_1 + \dots + X_N - 2\max_{i \le N} |\vec{X}_i|$. It then follows from (2.15) that the following theorem holds:

THEOREM 2.3. If the conditional distribution of X_i $(i = 1, 2, \dots, N)$, for any given value of X_{i+1}, \dots, X_N is symmetric around the origin, the inequality

(2.16)
$$\begin{array}{l} \operatorname{prob} \left\{ \left| X_{1} + \cdots + X_{N} \right| < c \right\} \leq \operatorname{prob} \left\{ M_{N} < c \right\} \\ \leq \operatorname{prob} \left\{ \left| X_{1} + \cdots + X_{N} \right| - 2 \max_{i \leq N} \left| X_{i} \right| < c \right\} \end{array}$$

holds for any value c.

Inequality (2.15) has also some interesting implications for the asymptotic distribution theory of M_N . In most cases we shall be concerned with the limiting distribution of $M_N/N^{1/2}$ as $N \to \infty$ (this is the case discussed in §4). If $(1/N^{1/2}) \max_{i \leq N} |X_i|$ converges stochastically to zero, as will usually be the case, inequality (2.15) implies that the limiting distribution of $M_N/N^{1/2}$ is the same as that of $(1/N^{1/2}) |\epsilon_1 \tilde{X}_1 + \cdots + \epsilon_N \tilde{X}_N|$.

426

3. The distribution of M_N when X_i can take only the values 1 and -1. Let X_1, \dots, X_N be independently distributed chance variables such that X_i can take only the values 1 and -1. Let p_i denote the probability that $X_i=1$. The probability that $X_i=-1$ is then equal to $1-p_i=q_i$.

Let \tilde{X}_i and \tilde{M}_i $(i=1, \dots, N)$ be defined by (2.1) and (2.2), respectively. One can easily verify that \tilde{M}_i can take only the values $-1, 0, 1, 2, \dots, i$. Let c_{ij} denote the probability that $\tilde{M}_i = j$ for $j=1, \dots, i$, and let c_{i0} be the probability that $\tilde{M}_i \leq 0$. It follows from the definition of the \tilde{M} 's that the following recursion formulas hold:

$$(3.1) c_{i+1,0} = q_{i+1}c_{i0} + q_{i+1}c_{i1},$$

$$(3.2) c_{i+1,j} = p_{i+1}c_{i,j-1} + q_{i+1}c_{i,j+1} (j = 1, 2, \cdots, i+1).$$

Since $\tilde{M}_N = M_N$, we have

$$(3.4) \qquad \text{prob} \left\{ M_N \leq 0 \right\} = c_{N0}.$$

We shall now construct N square matrices A_1, \dots, A_N , each having N+1 rows and N+1 columns, such that the first row of the product matrix $A_1A_2 \dots A_N$ is equal to $(c_{N0}, c_{N1}, \dots, c_{NN})$. Let a_{ij}^k denote the element in the *i*th row and *j*th column of the matrix A_k $(i, j=1, \dots, N+1; k=1, \dots, N)$. We put

(3.5)
$$a_{11}^{k} = q_{k}; \quad a_{i,i+1}^{k} = p_{k} \quad (i = 1, 2, \cdots, N); \\ a_{i,i-1}^{k} = q_{k} \quad (i = 2, 3, \cdots, N+1)$$

and all other elements a_{ij}^{k} equal to zero. It then follows easily from the recursion formulas (3.1) and (3.2) that the first row of the product $A_1A_2 \cdots A_N$ is equal to $(c_{N0}, c_{N1}, \cdots, c_{NN})$. Thus, the first row of the product $A_1A_2 \cdots A_N$ yields the exact probability distribution of M_N .

Starting with the initial values $c_{10} = q_1$, $c_{11} = p_1$, $c_{1j} = 0$ for j > 1, the final values c_{N0} , c_{N1} , \cdots , c_{NN} can be best computed by repeated application of the recursion formulas (3.1) and (3.2).

4. Proof of Theorem 1.1. Let $\{X_{N_i}\}$ and $\{X_{N_i}^*\}$ be two double sequences of chance variables for which conditions (a)-(f) of Theorem 1.1 are fulfilled. Let k be a positive integer and N_1, \dots, N_k a set of positive integers such that $N_1 < N_2 < \dots < N_k = N$. Let, furthermore,

 $(4.1) \quad P_{N,k}(c) = \text{prob} \left\{ \max \left(S_{NN_1}, S_{NN_2}, \cdots, S_{NN_k} \right) < c N^{1/2} \right\}.$

Because of conditions (b) and (c) of Theorem 1.1, there exist two finite values A and B such that $A \ge N\mu_{N_1}^2$ and $B \ge \sigma_{N_1}^2$ for all N and *i*. Let $\phi(k)$ be an upper bound of the values

(4.2)
$$\frac{N_1}{N}, \frac{N_2 - N_1}{N}, \dots, \frac{N_k - N_{k-1}}{N}$$

For any positive ϵ the following inequality holds:

$$(4.3) \quad P_{N,k}(c-\epsilon) - \frac{\phi(k)}{\epsilon^2} \left[B + A\phi(k) \right] \leq P_N(c) \leq P_{N,k}(c),$$

where $P_N(c) = \text{prob} \{M_N < cN^{1/2}\}$. Using a method given by Erdös and Kac [1], the author [2] has proved the above inequality when $\mu_{Ni} = \mu_N$, $\sigma_{Ni} = 1$ and $N_j = [jN/k]$. To adapt the proof given in [2] to the more general case treated here, it is sufficient to replace the right-hand member of (2.6) in [2] by

(4.4)
$$\frac{(N_{i+1}-N_i)B+(N_{i+1}-N_i)^2 \mu_N^2}{\epsilon^2 N},$$

where $\mu_N^2 = \max (\mu_{N1}^2, \dots, \mu_{NN}^2)$.

For the purpose of proving Theorem 1.1, we shall choose N_i to be the smallest positive integer for which

(4.5)
$$\sigma_{N1}^2 + \cdots + \sigma_{NN_j}^2 \geq \frac{j(\sigma_{N1}^2 + \cdots + \sigma_{NN}^2)}{k}$$

Since σ_{Nt}^2 has a positive lower bound and a finite upper bound, there exists a positive constant h, independent of k, such that h/k is an upper bound of the values (4.2). It then follows from (4.3) that

(4.6)
$$P_{N,k}(c-\epsilon) - \frac{1}{\epsilon^2 k} (a+b/k) \leq P_N(c) \leq P_{N,k}(c)$$

when a and b are positive constants independent of N, k, c and ϵ .

Clearly, if Theorem 1.1 is true for the special case when $\sigma_{N1}^2 + \cdots + \sigma_{NN}^2 = \sigma_{N1}^{*2} + \cdots + \sigma_{NN}^{*2}$, it must be true also in the general case. Hence, it is sufficient to prove Theorem 1.1 when $\sigma_{N1}^2 + \cdots + \sigma_{NN}^2 = \sigma_{N1}^{*2} + \cdots + \sigma_{NN}^{*2}$. In what follows we shall therefore restrict ourselves to this special case.

Let N_j^* , $P_{N,k}^*(c)$, and $P_N^*(c)$ have the same meaning with reference to the X^* 's as N, $P_{N,k}(c)$, and $P_N(c)$ with reference to the X's. Then we have

1948] DISTRIBUTION OF THE MAXIMUM OF CUMULATIVE SUMS

429

(4.7)
$$P_{N,k}^{*}(c-\epsilon) - \frac{1}{\epsilon^{2}k} (a^{*}+b^{*}/k) \leq P_{N}^{*}(c) \leq P_{N,k}^{*}(c),$$

where a^* and b^* are positive constants independent of N, k, c and ϵ .

Let $G_{k1}^N, G_{k2}^N, \dots, G_{kk}^N$ be independently and normally distributed chance variables and let the mean and standard deviation of G_{ki}^N be equal to the mean and standard deviation of $(k/N)^{1/2}(S_{NN_i}-S_{NN_{i-1}})$, respectively. Let, furthermore,

$$(4.8) \stackrel{Q_{N,k}(c)}{= \text{prob}} \{ \max (G_{k1}^{N}, G_{k1}^{N} + G_{k2}^{N}, \cdots, G_{k1}^{N} + \cdots + G_{kk}^{N}) < ck^{1/2} \}.$$

Clearly, the mean and standard deviation of G_{ki}^N are bounded functions of N, k and i. Furthermore, the standard deviation of G_{ki}^N has a positive lower bound. It then follows from condition (d) and the central limit theorem that

(4.9)
$$\lim_{N=\infty} \left[Q_{N,k}(c) - P_{N,k}(c) \right] = 0.$$

Let G_{kt}^{*N} and $Q_{N,k}^{*}(c)$ have the same meaning with reference to the X^{*} 's as G_{kt}^{N} and $Q_{N,k}(c)$ with reference to the X's. We then have

(4.10)
$$\lim_{N=\infty} \left[Q_{N,k}^*(c) - P_{N,k}^*(c) \right] = 0.$$

It follows from condition (f) of Theorem 1.1 that

(4.11)
$$\lim_{N=\infty} E(G_{ki}^{N} - G_{ki}^{*N}) = 0,$$

(4.12)
$$\lim_{N=\infty} E[(G_{ki}^{N})^{2} - (G_{ki}^{*N})^{2}] = 0.$$

Hence

(4.13)
$$\lim_{N \to \infty} \left[Q_{N,k}(c) - Q_{N,k}^{*}(c) \right] = 0.$$

From (4.9) and (4.10) and (4.13) we obtain

(4.14)
$$\lim_{N=\infty} \left[P_{N,k}(c) - P_{N,k}^{*}(c) \right] = 0.$$

Equations (4.6) and (4.14) give

(4.15)
$$\lim_{N=\infty} \inf \left[P_N(c) - P_{N,k}^*(c-\epsilon) + \frac{1}{\epsilon^2 k} \left(a + \frac{b}{k} \right) \right] \ge 0$$

and

(4.16)
$$\liminf_{N=\infty} \left[P_{N,k}^*(c) - P_N(c) \right] \ge 0.$$

Since

(4.17)
$$P_{N,k}^{*}(c-\epsilon) \geq P_{N}^{*}(c-\epsilon)$$

and since, because of (4.7),

(4.18)
$$P_{N,k}^{*}(c) - \frac{1}{\epsilon^{2}k} \left(a^{*} + b^{*}/k \right) \leq P_{N}^{*}(c+\epsilon),$$

we obtain from (4.15) and (4.16)

(4.19)
$$\lim_{N=\infty} \inf \left[P_N(c) - P_N^*(c-\epsilon) + \frac{1}{\epsilon^2 k} \left(a + \frac{b}{k} \right) \right] \ge 0$$

and

(4.20)
$$\liminf_{N=\infty} \left[P_N^*(c+\epsilon) + \frac{1}{\epsilon^2 k} \left(a^* + \frac{b^*}{k} \right) - P_N(c) \right] \ge 0.$$

Hence, since k can be chosen arbitrarily large, we obtain

(4.21)
$$\liminf_{N=\infty} \left[P_N(c) - P_N^*(c-\epsilon) \right] \ge 0$$

and

(4.22)
$$\liminf_{N=\infty} \left[P_N^*(c+\epsilon) - P_N(c) \right] \ge 0.$$

This concludes the proof of Theorem 1.1. It may be of interest to note that (4.21) and (4.22) imply that for any subsequence $\{N'\}$ of the sequence $\{N\}$ we have

(4.23)
$$\lim_{N=\infty} \inf P_{N'}^{*}(c-\epsilon) \leq \liminf_{N=\infty} P_{N'}(c) \leq \limsup_{N=\infty} P_{N'}(c)$$
$$\leq \limsup_{N=\infty} P_{N'}^{*}(c+\epsilon).$$

References

1. P. Erdös and M. Kac, On certain limit theorems of the theory of probability, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 292-302.

2. A. Wald, Limit distribution of the maximum and minimum of successive cumulative sums of random variables, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 142–153.

COLUMBIA UNIVERSITY

430