
ON THE DIFFERENCE OF CONSECUTIVE PRIMES 

P. ERDÖS 

The present paper contains some elementary results on the differ
ence of consecutive primes. Theorem 2 has been announced in a 
previous paper.1 Also some unsolved problems are stated. 

Let pi = 2, ^2 = 3, • • • , pk, • • • be the sequence of consecutive 
primes. Put dk=pk+i — pk. We have: 

THEOREM 1. There exist positive real numbers c\ and c2, £ i < l , c2<\, 
such that for every n the number of k's satisfying both 

(1) dk+i > (1 + ci)dk, k S n, 

and the number of I's satisfying both 

(2) di+i < (1 - a)di, l S », 

are each greater than c2n. 

We shall prove Theorem 1 later. From Theorem 1 we easily deduce : 

THEOREM 2. For every t and all sufficiently large n the number of solu
tions in k and I of each of the two sets of inequalities 

(3) ( J > pk, k ^ w; ( J < pu le n, 

is greater than (c2/2)n. 

Let e be sufficiently small but fixed. I t is well known that pn<2-n 
log n. Thus the number of k^.nf with pk+i>(l + e)pk, is less than 

c log n. Hence it follows from Theorem 1 that the number of k's 
satisfying 

(4) pk+1 < (1 + e)pk, dk > (1 + ci)dk-i, k ^ n, 

is greater than (c2/2)n. A simple calculation now shows that the 
primes satisfying (4) also satisfy the first inequality of (3) iÎ€ = e(ci) is 
chosen small enough. The second inequality of (3) is proved in the 
same way, which proves Theorem 2. 

Further, we obtain, as an immediate corollary of Theorem 1, that2 

Received by the editors October 17, 1947. 
1 P. Erdös and P. Turân, Some new questions on the distribution of primes, Bull. 

Amer. Math. Soc. vol. 54 (1948) pp. 371-378. 
2 This result was also stated in the above paper. 
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lim sup dk+i/dk > 1, lim inf dk+i/dk < 1. 

At present I can not decide whether du+2>dk+i>dk has infinitely 
many solutions. The following question might be of some interest: 
Let € n = l if dn+i>dn, otherwise €w = 0. I t may be conjectured that 
]C»T-i €w/2n is irrational. I can not even prove that from a certain 
point on ew is not alternatively 1 and 0. 

In order to prove Theorem 1 we need two lemmas. 

LEMMA 1. For sufficiently small Ci>0 the number of solutions in k of 
the inequalities 

(5) 1 + ci > dk+i/dk > 1 — ci, k ^ nt 

is less than n/4. 

Denote by g(n; a, b) the number of solutions of the simultaneous 
equations 

dk+i = #, dk = bt k ^ n. 

Denote by V the number of primes r<2-n-log n for which r+a and 
r+a+b are also primes. Since pn<2-n-\og n, we evidently have 

(6) g(n;atb) S V. 

Now let Ci>0 be sufficiently small and qu #2, • • • run through the 
primes less than neK Then V is not greater than ncz plus the num
ber U of integers m < 2 - w l o g n, which satisfy, for all i, 

m j£ 0 (mod qi), m f£ — a (mod g»), m ^ — {a + b) (mod qi). 

If q\a-b'(a+b) then these three residues are all different. In a pre
vious paper31 stated the following theorem: Let qu q^ • • • be primes 
all less than w*3. Associate with each qi t distinct residues r{*\ • • • , r?\ 
Then the number of integers m^nior which 

m ^ r / (mod qi), j = 1, 2, • • • , t; i = 1, 2, • • • , 

is less than 

The proof of this theorem follows easily from Brun's method.8 Thus 

8 P. Erdös, Proc. Cambridge Philos. Soc. vol. 33 (1937) p. 8, Lemma 2. A book of 
Rosser and Harrington on Brun's method will soon appear which will contain a detailed 
proof of this result. 
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we have 

U < cm log n X I l 1 )> <L < nC*> q\a*b-(a + b). 
Ü \ qf 

It is well known that4 

Q< 

Thus 

Q<X \ q / (log x)z
 q \ q2/ 

(logn)2
 Q \ q/ (log n) 

Hence finally from (6) and V^ U+ncz, 

(7) g(w; a, b) < cL " „ I l ( l +—), q\ o-b-(a + b). 
(log ny q \ q/ 

Now we split the k's satisfying (5) into two classes. In the first 
class put the k's with dk>2Q log n and in the second class the other 
k's. From pn<2-n'log n we deduce that the number of k's of the first 
class is less than n/10. 

The number of the k's of the second class is not greater than 

(8) Z ' * ( n ; a, b) < c j — ^ — Z ' I l ( l + -)> q\a-h{a + J), 
(log**)2

 q \ q/ 

where the prime indicates that the summation is extended over those 
a and b with a<20- log n, l+Ci>b/a>l—Ci. Now 

S' n (i+-)^z(n(i+-)s n (1+-) 
where in Zi> # < 2 0 log n and in Z*> l+^i>&/<^> 1 —^i- We have 

E n (1+i)<E(n(1+i)Vn(Hi)) 
2 «16(a+6) \ q/ 2 \ q\b \ q/ g | a + b \ ? / / 

<s(n(.t->n(.t-B)) 
E 2(1 

m<3a \ 

2cia\ l ^ - » 
< 2 J 2 ( 1 + ) <c6cia, 

m<8o \ m / m 
* See, for example, Hardy-Wright, p. 349. 
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by interchanging the order of summation and by observing that the 
number of ô's satisfying l+Ci>b/a>l — C\ and Z>=0(mod m) is less 
than l + (2-Ci-a/m). The same holds for the è's satisfying l + £ i 
>b/a>l— d and a+& = 0(mod m). (v(m) denotes the number of 
prime factors of m.) Thus 

Ù n (i+-)<^z«n(i+-) 
«|a-&.(a+6) \ # / 1 fl|a\ ? / 

< 2o^iiogf*zn(i+—) 
i « | a \ q/ 
» (201og*037<™> 

< 20c6ci log n 2^ ; 
m=i m2 

< c7d(\og n)2 < —— (log n)2 

10cB 

if Cx < 1/10 • c7 - c'b. Hence finally from (8) the number of solutions of (5) 
is less than 

n/10 + n/10 < n/4, 

which proves Lemma 1. 

LEMMA 2. There exists a constant cs so that the number of integers k^n 
satisfying 

(9) dk+i/dk > t or dk+i/dk < 1/t 

is less than Cs-n/t112. 

I t suffices to prove the lemma for large t. We split the integers k 
satisfying (9) into two not necessarily disjoint classes. In the first 
class are the k's for which either 

dk ^ /1/2-log n or dk+i è /1 / 2 log n. 

In the second class are the k's for which either 

dk Û (log n)/t^2 or dk+1 ^ (log n)//1 / 2 . 

Clearly if (9) is satisfied then k is in one of these classes. 
We obtain from pn<2-n-log n that the number of k's of the first 

class is less than 4-n/t112. 
As in the proof of Lemma 1 we obtain from our result proved in a 

previous paper3 that the number Z of solutions of du —a, u^n is 
less than 



1948] ON THE DIFFERENCE OF CONSECUTIVE PRIMES 889 

Z < cm log nH ( 1 ), q\a, q < n% 

Thus as in Lemma 1 

log » p |a \ £ / 

Thus the number of k's of the second class is less than 

n ^ T^r/A , 2 \ ^ n ™ (logn)2v^ w / 2 \ w °° 

2*o-— E , n ( i + - ) < 2 c l 0 - — z 
lOg fi a<logn/t112 p\a\ p/ log ft p « l 

Z1 '^2 

fl/2 

which proves Lemma 2, with £8 = 2+£n. 
Now we can prove Theorem 1. I t will suffice to prove (1). Suppose 

that (1) is not true. Then for every Ci>0 and €>0 there exists an 
arbitrarily large n so that the number of solutions of 

(10) dk+1 > ( 1 + ci)dk 

is less than e • n. Consider the product 

dn di dz dn 

d\ d\ d% dn_i 

By Lemma 2 the number of k^n satisfying dk+i/dk>221 is less than 
Csft/21. Thus by Lemma 1 and (10) we have for every u 

dn/di < 22u^Jl (2a0C8n/2,-(l + ci)n/4(l - d)ni2 

_ Csln log 4 
< 2 2 — exp E — ' ( 1 - ci)nl\ 

i^u 2l 

If e is sufficiently small there is a suitable choice of u such that 
22u*n<(l+cx)n'* and 

_ c8ln log 4 

ẑ w 2 

Thus d n / d i < ( l — cl)nlA<l/n for arbitrarily large w, an evident con-
tradition. This proves (1) and completes the proof of Theorem 1. 

SYRACUSE UNIVERSITY 


