ON THE DIFFERENCE OF CONSECUTIVE PRIMES

P. ERDÖS

The present paper contains some elementary results on the difference of consecutive primes. Theorem 2 has been announced in a previous paper.¹ Also some unsolved problems are stated.

Let $p_1=2$, $p_2=3$, \cdots , p_k , \cdots be the sequence of consecutive primes. Put $d_k = p_{k+1} - p_k$. We have:

THEOREM 1. There exist positive real numbers c_1 and c_2 , $c_1 < 1$, $c_2 < 1$, such that for every n the number of k's satisfying both

(1)
$$d_{k+1} > (1 + c_1)d_k, \qquad k \leq n,$$

and the number of l's satisfying both

(2) $d_{l+1} < (1 - c_1)d_l, \qquad l \leq n,$

are each greater than c_2n .

We shall prove Theorem 1 later. From Theorem 1 we easily deduce:

THEOREM 2. For every t and all sufficiently large n the number of solutions in k and l of each of the two sets of inequalities

(3)
$$\left(\frac{p_{k+1}^{t}+p_{k-1}^{t}}{2}\right)^{1/t} > p_{k}, k \leq n; \quad \left(\frac{p_{l+1}^{t}+p_{l-1}^{t}}{2}\right)^{1/t} < p_{l}, l \leq n,$$

is greater than $(c_2/2)n$.

Let ϵ be sufficiently small but fixed. It is well known that $p_n < 2 \cdot n$ log *n*. Thus the number of $k \leq n$, with $p_{k+1} > (1+\epsilon)p_k$, is less than *c* log *n*. Hence it follows from Theorem 1 that the number of *k*'s satisfying

(4)
$$p_{k+1} < (1 + \epsilon)p_k, \quad d_k > (1 + c_1)d_{k-1}, \quad k \leq n,$$

is greater than $(c_2/2)n$. A simple calculation now shows that the primes satisfying (4) also satisfy the first inequality of (3) if $\epsilon = \epsilon(c_1)$ is chosen small enough. The second inequality of (3) is proved in the same way, which proves Theorem 2.

Further, we obtain, as an immediate corollary of Theorem 1, that²

Received by the editors October 17, 1947.

¹ P. Erdös and P. Turán, Some new questions on the distribution of primes, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 371–378.

² This result was also stated in the above paper.

$$\limsup d_{k+1}/d_k > 1, \qquad \lim \inf d_{k+1}/d_k < 1.$$

At present I can not decide whether $d_{k+2} > d_{k+1} > d_k$ has infinitely many solutions. The following question might be of some interest: Let $\epsilon_n = 1$ if $d_{n+1} > d_n$, otherwise $\epsilon_n = 0$. It may be conjectured that $\sum_{n=1}^{\infty} \epsilon_n/2^n$ is irrational. I can not even prove that from a certain point on ϵ_n is not alternatively 1 and 0.

In order to prove Theorem 1 we need two lemmas.

LEMMA 1. For sufficiently small $c_1 > 0$ the number of solutions in k of the inequalities

(5)
$$1 + c_1 > d_{k+1}/d_k > 1 - c_1, \qquad k \leq n,$$

is less than n/4.

Denote by g(n; a, b) the number of solutions of the simultaneous equations

$$d_{k+1} = a, \qquad d_k = b, \qquad \qquad k \leq n.$$

Denote by V the number of primes $r < 2 \cdot n \cdot \log n$ for which r+a and r+a+b are also primes. Since $p_n < 2 \cdot n \cdot \log n$, we evidently have

(6)
$$g(n; a, b) \leq V.$$

Now let $c_1 > 0$ be sufficiently small and q_1, q_2, \cdots run through the primes less than n^{c_3} . Then V is not greater than n^{c_3} plus the number U of integers $m < 2 \cdot n \cdot \log n$, which satisfy, for all i,

$$m \not\equiv 0 \pmod{q_i}, \quad m \not\equiv -a \pmod{q_i}, \quad m \not\equiv -(a+b) \pmod{q_i}.$$

If $q \nmid a \cdot b \cdot (a+b)$ then these three residues are all different. In a previous paper³ I stated the following theorem: Let q_1, q_2, \cdots be primes all less than n^{c_3} . Associate with each q_i t distinct residues $r_1^{(i)}, \cdots, r_i^{(i)}$. Then the number of integers $m \leq n$ for which

$$m \not\equiv r_i^{(i)} \pmod{q_i}, \qquad j = 1, 2, \cdots, t; i = 1, 2, \cdots,$$

is less than

$$cn\prod_{i}\left(1-\frac{t}{q_{i}}\right).$$

The proof of this theorem follows easily from Brun's method.³ Thus

[October

⁸ P. Erdös, Proc. Cambridge Philos. Soc. vol. 33 (1937) p. 8, Lemma 2. A book of Rosser and Harrington on Brun's method will soon appear which will contain a detailed proof of this result.

we have

$$U < c_4 n \log n \prod_q \left(1 - \frac{3}{q}\right), \quad q < n^{c_3}, \qquad q \nmid a \cdot b \cdot (a + b).$$

It is well known that⁴

$$\prod_{q < x} \left(1 - \frac{3}{q}\right) < \frac{c}{(\log x)^3} \quad \text{and} \quad \prod_q \left(1 - \frac{q}{q^2}\right) > 0.$$

Thus

$$U < c_5 \frac{n}{(\log n)^2} \prod_q \left(1 + \frac{3}{q}\right), \qquad q \mid a \cdot b \cdot (a+b).$$

. .

Hence finally from (6) and $V \leq U + n^{c_3}$,

(7)
$$g(n; a, b) < c'_{\mathfrak{s}} \frac{n}{(\log n)^2} \prod_{q} \left(1 + \frac{3}{q}\right), \qquad q \mid a \cdot b \cdot (a + b).$$

Now we split the k's satisfying (5) into two classes. In the first class put the k's with $d_k > 20 \log n$ and in the second class the other k's. From $p_n < 2 \cdot n \cdot \log n$ we deduce that the number of k's of the first class is less than n/10.

The number of the k's of the second class is not greater than

(8)
$$\sum' g(n; a, b) < c'_{\mathfrak{s}} \frac{n}{(\log n)^2} \sum' \prod_{q} \left(1 + \frac{3}{q}\right), \quad q \mid a \cdot b \cdot (a + b),$$

where the prime indicates that the summation is extended over those a and b with $a < 20 \cdot \log n$, $1+c_1 > b/a > 1-c_1$. Now

$$\sum' \prod_{\substack{q \mid a \cdot b(a+b)}} \left(1 + \frac{3}{q}\right) \leq \sum_{1} \left(\prod_{\substack{q \mid a}} \left(1 + \frac{3}{q}\right) \sum_{2} \prod_{\substack{q \mid b(a+b)}} \left(1 + \frac{3}{q}\right)\right)$$

where in $\sum_{1} a < 20 \log n$ and in $\sum_{2} 1 + c_1 > b/a > 1 - c_1$. We have

$$\sum_{2} \prod_{q \mid b \ (a+b)} \left(1 + \frac{3}{q} \right) < \sum_{2} \left(\prod_{q \mid b} \left(1 + \frac{3}{q} \right)^{2} + \prod_{q \mid a+b} \left(1 + \frac{3}{q} \right)^{2} \right)$$
$$< \sum_{2} \left(\prod_{q \mid b} \left(1 + \frac{15}{q} \right) + \prod_{q \mid a+b} \left(1 + \frac{15}{q} \right) \right)$$
$$< \sum_{m < 8a} 2 \left(1 + \frac{2c_{1}a}{m} \right) \frac{15^{V(m)}}{m} < c_{6}c_{1}a,$$

⁴ See, for example, Hardy-Wright, p. 349.

by interchanging the order of summation and by observing that the number of b's satisfying $1+c_1 > b/a > 1-c_1$ and $b \equiv 0 \pmod{m}$ is less than $1+(2\cdot c_1\cdot a/m)$. The same holds for the b's satisfying $1+c_1 > b/a > 1-c_1$ and $a+b \equiv 0 \pmod{m}$. (v(m) denotes the number of prime factors of m.) Thus

$$\sum' \prod_{q \mid a \cdot b \cdot (a+b)} \left(1 + \frac{3}{q} \right) < c_6 c_1 \sum_1 a \prod_{q \mid a} \left(1 + \frac{3}{q} \right)$$

$$< 20 c_6 c_1 \log n \sum_1 \prod_{q \mid a} \left(1 + \frac{3}{q} \right)$$

$$< 20 c_6 c_1 \log n \sum_{m=1}^{\infty} \frac{(20 \log n) 3^{V(m)}}{m^2}$$

$$< c_7 c_1 (\log n)^2 < \frac{1}{10 c_5'} (\log n)^2$$

if $c_1 < 1/10 \cdot c_7 \cdot c_5'$. Hence finally from (8) the number of solutions of (5) is less than

$$n/10 + n/10 < n/4$$

which proves Lemma 1.

LEMMA 2. There exists a constant c_8 so that the number of integers $k \leq n$ satisfying

(9)
$$d_{k+1}/d_k > t \text{ or } d_{k+1}/d_k < 1/t$$

is less than $c_8 \cdot n/t^{1/2}$.

It suffices to prove the lemma for large t. We split the integers k satisfying (9) into two not necessarily disjoint classes. In the first class are the k's for which either

 $d_k \ge t^{1/2} \cdot \log n$ or $d_{k+1} \ge t^{1/2} \cdot \log n$.

In the second class are the k's for which either

$$d_k \leq (\log n)/t^{1/2}$$
 or $d_{k+1} \leq (\log n)/t^{1/2}$.

Clearly if (9) is satisfied then k is in one of these classes.

We obtain from $p_n < 2 \cdot n \cdot \log n$ that the number of k's of the first class is less than $4 \cdot n/t^{1/2}$.

As in the proof of Lemma 1 we obtain from our result proved in a previous paper³ that the number Z of solutions of $d_u = a$, $u \leq n$ is less than

$$Z < c_{\vartheta}n \log n \prod_{q} \left(1 - \frac{2}{q}\right), \qquad q \nmid a, q < n^{c_{\vartheta}}.$$

Thus as in Lemma 1

$$Z < c_{10} \frac{n}{\log n} \prod_{p \mid a} \left(1 + \frac{2}{p} \right).$$

Thus the number of k's of the second class is less than

$$2c_{10} \frac{n}{\log n} \sum_{a < \log n/t^{1/2}} \prod_{p \mid a} \left(1 + \frac{2}{p} \right) < 2c_{10} \frac{n}{\log n} \sum_{p=1}^{\infty} \frac{(\log n) 2^{V(d)}}{t^{1/2} d^2} < \frac{c_{11}n}{t^{1/2}},$$

which proves Lemma 2, with $c_8 = 2 + c_{11}$.

Now we can prove Theorem 1. It will suffice to prove (1). Suppose that (1) is not true. Then for every $c_1 > 0$ and $\epsilon > 0$ there exists an arbitrarily large n so that the number of solutions of

(10)
$$d_{k+1} > (1+c_1)d_k$$

is less than $\epsilon \cdot n$. Consider the product

$$\frac{d_n}{d_1} = \frac{d_2}{d_1} \cdot \frac{d_3}{d_2} \cdot \cdot \cdot \frac{d_n}{d_{n-1}} \cdot$$

By Lemma 2 the number of $k \leq n$ satisfying $d_{k+1}/d_k > 2^{2l}$ is less than $c_8n/2^l$. Thus by Lemma 1 and (10) we have for every u

$$d_n/d_1 < 2^{2u \epsilon n} \prod_{l \ge 2^{2u}} (2^{2l})^{c_8 n/2l} \cdot (1+c_1)^{n/4} (1-c_1)^{n/2}$$

$$< 2^{2u \epsilon n} \exp \sum_{l \ge u} \frac{c_8 ln \log 4}{2^l} \cdot (1-c_1)^{n/4}.$$

If ϵ is sufficiently small there is a suitable choice of u such that $2^{2u\epsilon n} < (1+c_1)^{n/8}$ and

$$\exp\sum_{l\geq u}\frac{c_8ln\,\log\,4}{2^l}<(1+c_1)^{n/8}.$$

Thus $d_n/d_1 < (1-c_1^2)^{n/4} < 1/n$ for arbitrarily large *n*, an evident contradition. This proves (1) and completes the proof of Theorem 1.

Syracuse University

1948]