
ON POLYNOMIALS AND LAGRANGE'S FORM 
OF THE GENERAL MEAN-VALUE THEOREM 

V. RAMASWAMI 

Suppose that in (a<x<b) (hereafter referred to as (#, &)), 
(1) f(x) is defined and has derivatives of the first n orders. 

Then, from the general mean-value theorem with Lagrange's form of 
remainder follows the existence of 0=0(#, A), such that 

(2) f(x + h) = ƒ(*) + £ ^ƒ('>(*) + -s ƒ<»>(* + eh) 
r«i r\ n\ 

for a < x < x + h < b. 

The 0 in (2) is sometimes a uniquely determinate function of x and h 
in the relevant domain a<x<x+h<b (hereafter referred to as R), 
as, for instance, if f(n+1)(x) exists and is not zero in (a, &). If, further, 
/<n+1>(#) is continuous in (a, &), it is easily seen that 

1 
lim 0(#, h) = in a < x < b. 

h-»+o n -f 1 
It is also possible for 0(x, h) to be an analytic function, for example, 

/ " hrT(n + 1) \ 
«(*, *) = *r»log(l + E vf J_ ' ), 

\ r-i r ( » + r + 1)/ 

which happens when f(x) = e*. 
I t would, therefore, seem worth while to determine the types of 

functions that are or are not possible for d(x, h). Inquiry in this direc­
tion has led to the results of this paper, namely: 

THEOREM 1. If a polynomial d(xy h) exists such that (2) is true with 
6(xy h) in place of 0, thenf(n+l)(x) exists in (a, b) and either 

(a) /<"+1>(#) = 0 in (a, b) 

or 
(b) f(n+1)(x) = a constant j£ 0 in (a, b), andd(x, h) is uniquely determinate 

and equal to l/(w + l) in R. 

THEOREM 2. If (2) is true with 0(x, h)=*c(x)+hd4>(x, h) where 
(3) cj>(xf h) is bounded in R; 
(4) d is a constant greater than 1 ; 
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(5) dO/dx, d29/d2x are continuous in x, and 0 is bounded in R; 
(6) for all sufficiently small h, l+h(dd/dx) ?*Q in R; 

then, also, (a) and (b) of Theorem 1 are true. 

I t is significant that, if 6 is uniquely determined by (2) in R and 
not equal to l/(w + l ) , then 0 = d(x, h) cannot be equal to a poly­
nomial in R (by Theorem 1) or even to an analytic function (by 
Theorem 2) satisfying 

(7) linu-oô0/ôÂ = O for every x in (a, &). 
[In the following we write d(x, 0) for lim^+o 0(x, h) and Oi(x, 0) for 

lima-+o(0(#, h)—d{x, 0)/h) (which limits obviously exist in the con­
texts of the two theorems), and 0r8 for (dr+8/dxrdh8)0, wherever the 
latter obviously exists. ] 

PROOF OF THEOREM 1. 

(8) The conditions (5) and (6) are obviously satisfied here and 
(2) is true by hypothesis. 

On account of the consequent boundedness of d in Rf and the con­
tinuity of 6 in x, follows 

(9) y — x+0h for every y in (a, b), with any sufficiently small h and 
a correspondingly chosen x such that (x, h) lies in R. 
From (8) and (9) follows 

(10) /n+10*0 and fn+2{x) exist and are continuous in (a, b). 
Now, from the general mean-value theorem follows 

ƒ(* + h) = fix) + È -^ƒ('>(*) + h^\ ƒ<"+*>(*) 
r-1 t\ ( » + 1)1 

fe»+2 

+ , , ^ , / ( M + 2 ) ( * + M , o < * i < i , (x,h)CR; 

(n + 2) ! 

and from (2) and the same theorem applied to fn(x+0h) follows 

fix +h)= f(x) + £ — ƒ<"(*) + —— ƒ<•+«(*) 
(12) ~l " (n)l 

hn+2e2 

+ fw>(% + e2oh)} o < e2 < l, (*, *) C R. 
n\2\ 

Subtracting (12) from (11) and making h—*+0 after division by 
hn+1, it follows by (10) that 

(13) f("+»(x)[l - (» + l)0(a, 0)] = 0. 

Using (13) in (11) and (12), and making h-*+Q after division of 
their difference by hn+2

f it follows, again by (10), 
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r (»+l)(n+2) 1 

(14)
 /(n+2)(*} L1 " 2 6K%% 0 ) J 

- ƒ<•+»(*)(» + 1)(» + 2)0i(«. 0) = 0. 
Now, either 

(15a) jf (n+1)(#)=0 everywhere in (a, b)\ 
or 

(15b) f(n+1)(x) 5^0 everywhere in (a, ô) ; 
or 

(15c) on account of the continuity (by (10)) of/ (n+1)(x) there exists 
a closed interval (#i, bi) contained in (a, b) such that / ( W + 1 ) ( # ) T ^ 0 for 
ai<x<bi, and one at least of/(w+1)(ai) and f(n+1)(bi) is zero. 

If (15c) were possible, then we should have, by (13) and (14), 

/ O H * > ( * ) . » / 2 ( » + 1) - f<*+»(x)(n + l)(n + 2)61(x1 0) = 0 

in (ai < x < 6i), 

and hence /Cn+1)(#) —A -exp {0(#)} in ai<x<bx, where <j>(x) is a poly­
nomial and 4̂ is a constant, and making x—>#i or èi in this, there would 
follow tha t / ( n + 1 ) (#) = 0 in a\<x<bif which contradicts (15c). Hence 

(16) (15c) is impossible, and f(n+l)(x) =A exp {<t>(x)} ina<x<b, 
where </>(x) is a polynomial and A = a c o n s t a n t s , if f(n+1)(x) 5^0 for 
some x in (a, b). 

Now differentiating (2) with respect to x and h, as is obviously 
permissible on account of (10), and subtracting, and dividing by 
hn~\ it follows that 

h 
ƒ<»>(*) - ƒ<»>(* + Oh) = — /<n+1)(* + Oh) [6 - l + Moi ~ Wio] in JR. 

n 

Differentiating this (possible by (10)) with respect to x and using (16) 
we get 

(17) exp {k(xf h)}—g(x, h) in i?, in case (15b), where k(x, h) 
=#(#) — <p(x+6h) and k(x, h) and g(x, h) are polynomials in x and h. 

I t is now seen by the theory of analytic continuation that (17) is 
impossible unless k(x, h) is a constant, which again is seen to be zero 
by keeping x fixed and making h—»+0. Hence 

(18) 4>(x) = <t>(x + eh) in R. 

Now from (2) obviously follows 
(19) f(x) is a polynomial of degree not greater than n in (a, 6) if 

0(x, / 0 = 0 . Also, by continuous variation of x and A in R it follows 
from (18) that 
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(20) <j>(x) = a constant k in (a, b) if 6(x, h) f^O, 
and hence, using (16), follows 

(21) ƒ<*+»(*) «i ia* in (a, b) where A^O if ƒ<•+«(*)?*0 in (a, 6), 
Now the theorem follows from (10), (15a), (15b), (16), (19) and (21). 
since, when / ( n + 1 ) ( # ) = a c o n s t a n t s , 0 = l / ( w + l ) and is uniquely 
determined by (2) in R. 

PROOF OF THEOREM 2. In this case, the statements (8) to (14) follow 
as above, and 0i(#, 0) = 0 since d > 1. Hence (13) and (14) now become 

(22) ƒ<*+*>(*) [1 - (» + 1M*)] = 0 in (a, ft), 

(23) 
r (n+l)(n+2) "1 

/<*+2>(*) 1 - c2(#) = 0 in (a, b). 

Hence either 
(24a) ƒ<n+1) (x) = 0 every where in (a, &), 

or 
(24b) fn+1)(x) =C9*0 for some x in (a, 6). 

Then, (22) and (23) give 
(25) <;(*) = l / ( n + l ) wherever ƒ<n+1>(:x;)^0, 
(26) jf<«+2>(*)=0 wherever ƒ<»+»(*)5*0. 

The theorem now follows from (10), (24a), (24b), (25) and (26), since, 
when f(n+1)(x) =c?*0 in (a, b), 0 in (2) is uniquely determined in i?. 

Note added January 18, 1948. The conclusions (a) and (b) of 
Theorem 1 are true if (2) holds with 0(x, h) in place of 0, where 

m 

6(x, h) = X) h%(x), 

and di(x) is a polynomial, 0(x, h) satisfies (6) and each of the func­
tions 6v(x) satisfies (5). The line of proof is briefly as follows: 

The arguments up to and including (16) are the same as above, 
and the equation in (17) is now true with K(x, h)=(j>(x)-~cl)(x+d]i), 
and K(x, h) and g(x, h) polynomials in h for fixed x. The rest of the 
argument is the same as before. 

The conclusion (20) can also be seen directly as follows: Differ­
entiating (18) with respect to hf we have 

4>'(x+6h)l0+ h — J = 0. 

Making h—^O in this and noting that 0(#, 0) = l / ( w + l ) in case (15b) 
we have <t>f(x) = 0 , and hence <p(x) = &, a constant in (a, b). 
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