ON POLYNOMIALS AND LAGRANGE’S FORM
OF THE GENERAL MEAN-VALUE THEOREM

V. RAMASWAMI

‘Suppose that in (¢ <x <b) (hereafter referred to as (a, b)),
(1) f(x) is defined and has derivatives of the first # orders.
Then, from the general mean-value theorem with Lagrange’s form of
remainder follows the existence of 6 =8(x, %), such that
n—1 hr hr
(2) flx+ B) = f(x) + 20 — f(x) + — f(x + 0k)
o1 7! n!
fora<z<ax4k<b
The 0 in (2) is sometimes a uniquely determinate function of ¥ and %
in the relevant domain a <x <x-+h<b (hereafter referred to as R),
as, for instance, if f®*+P(x) exists and is not zero in (a, b). If, further,
F@tV(x) is continuous in (a, b), it is easily seen that

1
lim 6(x, ) = —— ine<x<b.
h—+0 n+1

It is also possible for 8(x, %) to be an analytic function, for example,

* wT(n+1)
0(x, h) = k1lo (1 + ___________),
) & Z:l Tn+r+1)
which happens when f(x) =e=.
It would, therefore, seem worth while to determine the types of
functions that are or are not possible for 8(x, k). Inquiry in this direc-
tion has led to the results of this paper, namely:

THEOREM 1. If a polynomial 6(x, k) exists such that (2) is true with
0(x, b) in place of 0, then f™+V(x) exists in (a, b) and either
(a) ft(x) =0 in (a, b)
or

(b) f+tV(x) =a constant %0 in (a,b),and 0(x, k) is uniquely determinate
and equal to 1/(n+1) in R.

THEOREM 2. If (2) is true with 0(x, k) = c(x) +hip(x, k) where
(3) ¢(x, h) is bounded in R;
(4) d is a constant greater than 1;
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(5) 00/0x, 3%0/9%x are continuous in x, and 0 is bounded in R;
(6) for all sufficiently small h, 1+h(360/3x) =0 in R;
then, also, (a) and (b) of Theorem 1 are true.

It is significant that, if  is uniquely determined by (2) in R and
not equal to 1/(n-+1), then §=60(x, ) cannot be equal to a poly-
nomial in R (by Theorem 1) or even to an analytic function (by
Theorem 2) satisfying

(7) limy.006/9k =0 for every x in (e, b).

[In the following we write (x, 0) for lims.4o 8(x, k) and 6:(x, 0) for
limp,40(0(x, £) —0(x, 0)/k) (which limits obviously exist in the con-
texts of the two theorems), and 8,, for (97+*/dx7dh*)0, wherever the
latter obviously exists.

ProoF oF THEOREM 1.

(8) The conditions (5) and (6) are obviously satisfied here and
(2) is true by hypothesis.

On account of the consequent boundedness of 6 in R, and the con-
tinuity of 6 in x, follows

(9) y=x+0k for every yin (a, b), with any sufficiently small % and
a correspondingly chosen x such that (x, %) lies in R.

From (8) and (9) follows
(10) f**+(x) and f**+2(x) exist and are continuous in (@, b).
Now, from the general mean-value theorem follows

n hr n+1
S+ 1) = 1) + 35 2 f0(s) 4 fieen(a)
(11) r—1 7! (n+ 1!
n+2
-+ mf("+2)(x + 01h), 0<0,<1, (x, h) C R;

and from (2) and the same theorem applied to f*(x-+6k) follows

n+19
(n)!

f (2 + 0:08), 0<0,<1,(x, b) CR.

n hr
fle+ ) = f(o) + 2 — 0@+ fe ()

r=1

(12)

hn+202

nl2!

+
Subtracting (12) from (11) and making k—-0 after division by

hrt1 it follows by (10) that

(13) F(@)[1 = (n+ 16(x, 0)] = 0.

Using (13) in (11) and (12), and making 2— -0 after division of
their difference by A*t2, it follows, again by (10),
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| (n+ 1)(n+ 2)

5 0%(x, O)]

= [ (@) (n + 1)(n + 2)01(%, 0) = 0.

(14) f(n+2)(x) [

Now, either

(15a) f@+(x) =0 everywhere in (a, b);
or

(15b) f®+D(x)£0 everywhere in (a, b);
or

(15¢) on account of the continuity (by (10)) of f+D(x) there exists
a closed interval (a;, b;) contained in (@, b) such that f&+0(x) 0 for
@, <x <by, and one at least of f®»*+D(q,) and f*+V(b,) is zero.

If (15c) were possible, then we should have, by (13) and (14),

FB(x) n/2(n 4 1) — [ (x)(n + 1)(n + 2)0:(x, 0) = 0
in (a1 < 2 < by),

and hence f®+V(x) =4 -exp {¢(x)} in @, <x <b, where ¢(x) is a poly-
nomial and 4 is a constant, and making x—a; or b; in this, there would
follow that f®+D(x) =0 in @, <x <b;, which contradicts (15c). Hence

(16) (15¢) is impossible, and f&®+V(x) =4 exp {d)(x)} in a <x<b,
where ¢(x) is a polynomial and 4 =a constant 0, if f™+(x) 0 for
some x in (a, b).

Now differentiating (2) with respect to x and %, as is obviously
permissible on account of (10), and subtracting, and dividing by
k1, it follows that

F™ (%) — f™(x + 0h) = if‘”“)(x + 0k)[6 — 1 + ko1 — hBy] in R.
n

Differentiating this (possible by (10)) with respect to x and using (16)
we get
(17) exp {k(x, h)} =g(x, k) in R, in case (15b), where k(x, &)
=¢(x) —p(x+0k) and k(x, k) and g(x, k) are polynomials in x and 4.
It is now seen by the theory of analytic continuation that (17) is
impossible unless k(x, k) is a constant, which again is seen to be zero
by keeping x fixed and making A—--0. Hence

(18) #(%) = ¢(x + 0h) in R.

Now from (2) obviously follows

(19) f(x) is a polynomial of degree not greater than # in (a, b) if
0(x, 1) =0. Also, by continuous variation of x and % in R it follows
from (18) that
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(20) ¢(x)=a constant k in (a, b) if 6(x, k) #0,
and hence, using (16), follows

(21) fotD(x)=Ae* in (a, b) where 40 if f*+D(x)0 in (a, b),
Now the theorem follows from (10), (15a), (15b), (16), (19) and (21).
since, when f®+(x)=a constant>0, 6=1/(n+1) and is uniquely
determined by (2) in R.

Proor oF THEOREM 2. In this case, the statements (8) to (14) follow
asabove, and 0;(x, 0) =0 since d >1. Hence (13) and (14) now become

(22) fAD()[1 — (n+ 1)e(x)] =0 in (a, b),
(23) [t (x) [1 - (—”+—1)2(ﬁ—-22 02(x):| =0 in (g, b).

Hence either
(24a) f»+D(x) =0 every where in (a, ),
or
(24b) f»+D(x) =¢5#0 for some x in (a, b).
Then, (22) and (23) give
(25) ¢(x) =1/(n+1) wherever f&+D(x) 0,
(26) f+D(x) =0 wherever f®+D(x) 0.
The theorem now follows from (10), (24a), (24b), (25) and (26), since,
when f@+D(x) =¢0in (a, b), 0 in (2) is uniquely determined in R.
Note added January 18, 1948. The conclusions (a) and (b) of
Theorem 1 are true if (2) holds with 8(x, %) in place of 8, where

0(x, b) = 2 h"6,(x),
r=0
and 6;(x) is.a polynomial, 0(x, %) satisfies (6) and each of the func-
tions 6,(x) satisfies (5). The line of proof is briefly as follows:

The arguments up to and including (16) are the same as above,
and the equation in (17) is now true with K(x, k) =¢(x) —¢(x+0k),
and K(x, k) and g(x, k) polynomials in & for fixed x. The rest of the
argument is the same as before.

The conclusion (20) can also be seen directly as follows: Differ-
entiating (18) with respect to %, we have

"( +0h)(0+h69>—0
o' (x 5) =

Making 2—0 in this and noting that 6(x, 0) =1/(n-+1) in case (15b)
we have ¢’(x) =0, and hence ¢(x) =%, a constant in (a, b).
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