is a projective collineation of order $N_{n, 0}^{m}$ and leaves invariant $\left(z_{0}^{p^{i m}}, z_{1}^{p^{i m}}, \cdots, z_{n}^{p^{i m}}\right), i=0,1, \cdots, n$, and the given S_{n}^{m}. Therefore (3) is a power of T. Since a fixed S_{n}^{r} of (3) has been obtained, on denoting it by R_{n}^{r} we have that

$$
T^{i}\left(R_{n}^{r}\right), \quad i=1,2, \cdots, N_{n, 0}^{m} / N_{n, 0}^{r}
$$

are the fixed S_{n}^{r} of (3), where $T^{i}\left(R_{n}^{r}\right)$ represents the image of R_{n}^{r} effected by T^{i}. These $N_{n, 0}^{m} / N_{n, 0}^{\tau}$ fixed S_{n}^{r} evidently satisfy the condition of the theorem. Thus we have completed the proof.

National University of Chekiang

SOME CONSEQUENCES OF A WELL KNOWN THEOREM ON CONICS

R. A. ROSENBAUM AND JOSEPH ROSENBAUM

Graustein [4, p. 296] ${ }^{1}$ proves the following theorem:
Theorem I. If three point conics have a common chord, and the three conics are taken in pairs and the common chord of each pair which is opposite to the given common chord is drawn, the three resulting lines are concurrent.

He remarks that several well known theorems, including those of Pascal and the existence of the radical center of 3 non-coaxal circles, are obtainable as special cases of the above. The following result also follows directly from Theorem I:

Corollary 1. The joins of the intersections of the opposite sides of a complete quadrangle with a conic passing through two vertices of the quadrangle are concurrent.

This corollary furnishes a simple proof of Ex. 155, p. 307 of Baker [1]: Let A, B, C, O be 4 points of a conic; let a line meet $B C$, $C A, A B$ respectively in L, M, N; and $O L, O M, O N$ meet the conic again in P, Q, R respectively. Then $A P, B Q, C R$ meet in a point, lying on the line $L M N$.

It does not seem to have been noted that the following theorem may be obtained directly from Theorem I.

[^0]Theorem 1. The intersections of each of the conics of a pencil with a fixed conic \mathcal{C} passing through 2 of the base points of the pencil are pairs of points of an involution on \mathcal{C}.

Proof. Suppose that the base points of the pencil of conics are A, B, C, D; that \mathcal{C} passes through A and B; and that \mathcal{C} intersects any 3 conics $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ of the pencil in $P_{1}, Q_{1} ; P_{2}, Q_{2}$; and P_{3}, Q_{3}. Then, by Theorem I, the lines $P_{1} Q_{1}, P_{2} Q_{2}, C D$ are concurrent; so also are the lines $P_{1} Q_{1}, P_{3} Q_{3}, C D$. Hence the lines $P_{i} Q_{i}$ all pass through the same point, for all points of intersection P_{i}, Q_{i} of \mathcal{C} with an arbitrary conic, Σ_{i}, of the pencil. But this last is just the condition that P_{i}, Q_{i} are pairs of an involution on \mathcal{C}.

This result might also have been obtained more laboriously (for the proof of Theorem I itself is easy) by the method which Baker [2, pp. 134-138] uses for general involutions.

The involution theorem of Desargues follows from Theorem 1 as a special case by letting \mathcal{C} consist of the line $A B$ and a line not through any of the points A, B, C, D.

Theorem I leads to a poristic result in the following manner: Let Σ, Σ^{\prime} be two conics through A, B, C, D. Choose A_{1} on Σ, and draw $A A_{1}$ to meet Σ^{\prime} in α_{1}. Let $\alpha_{1} B$ meet Σ in $A_{2} ; A A_{2}$ meet Σ^{\prime} in α_{2}, and so on. Starting with A_{1} on Σ, we thus set up a sequence of points, A_{i}, on $\Sigma: A A_{i}$ meets Σ^{\prime} in α_{i}, and $\alpha_{i} B$ meets Σ in A_{i+1}. Then we have the following theorem.

Theorem 2. If A_{n} coincides with A_{1} for some position of A_{1}, then A_{n} will coincide with A_{1} for all positions of A_{1}.

Proof. Choose B_{1} on Σ and let the intersection of $B B_{1}$ with Σ^{\prime} be called β_{1}. The lines $A A_{1}$ and $B B_{1}$ constitute a conic through A and B; hence, by Theorem I, $A_{1} B_{1}, \alpha_{1} \beta_{1}$, and $C D$ are collinear, at O, say. If the intersection of $\beta_{1} A$ with Σ is called B_{2}, then, by the same argument, $A_{2} B_{2}$ passes through O. (We have, then, two sets of lines, $A_{i} B_{i}$ and $\alpha_{i} \beta_{i}$, all concurrent at O). Now, if, for some A_{1}, A_{n} coincides with A_{1}, B_{n} will coincide with B_{1}, for all B_{1}. Hence, in turn, A_{n} will coincide with A_{1}, for all A_{1}.

The condition for periodicity when the two conics are circles may be easily obtained:

Theorem 3. Let S, S^{\prime} be two circles, centered at O, O^{\prime}, intersecting at A and B. The sequence $\left\{A_{i}\right\}$ on S is obtained as follows: $A_{i} A$ intersects S^{\prime} at $\alpha_{i} ; \alpha_{i} B$ intersects S at A_{i+1}. Then a necessary and sufficient condition that A_{n} shall coincide with A_{1} for all starting points, A_{1}, on S is that angle $O A O^{\prime}=m \pi / n$ where m and n have no common factor.

Proof. In triangle $A_{i} B \alpha_{i}$, each of the angles A_{i} and α_{i} is constant, because they are inscribed angles subtending the fixed arcs $A B$ and $B A$ of circles S and S^{\prime}. Hence, the third angle, B, is also constant. Now when A_{i} has the particular position where $A_{i} A$ is perpendicular to $A B$, then $B A_{i}$ and $B \alpha_{i}$ are diameters; so that for this position angle $A_{i} B \alpha_{i}$ is angle $O B O^{\prime}$. Hence angle $A_{i} B \alpha_{i}$ equals angle $O B O^{\prime}$ for all positions of A_{i}. Since angle $A_{i} B \alpha_{i}$ is the same as angle $A B A_{i+1}$, and since angle $A_{i} B A_{i+1}$ equals $1 / 2$ arc $A_{i} A_{i+1}$, it follows that arc $A_{i} A_{i+1}$ equals twice angle $O B O^{\prime}$, for all positions of A_{i}.

The condition for A_{n} to coincide with A_{1} is obviously that $\sum_{1}^{n} \operatorname{arc} A_{i} A_{i+1}=2 m \pi$, or that angle $O A O^{\prime}\left(=\right.$ angle $\left.O B O^{\prime}\right)=m \pi / n$.

This result is related to Steiner's porism on a ring of circles tangent to two fixed circles and to the neighboring circles of the ring. (See, for example, Coolidge [3, p. 30] or Johnson [5, p. 115].)

Corollary 2. Given two circles S_{1}, S_{2} with their line of centers intersecting S_{1} in $P_{1} Q_{1}$ and S_{2} in $P_{2} Q_{2}$. Let the circles constructed on $P_{1} Q_{2}$ and $P_{2} Q_{1}$ as diameters be Σ_{1}, Σ_{2}. Then, if either of the pairs $\left(S_{1}, S_{2}\right)$, $\left(\Sigma_{1}, \Sigma_{2}\right)$ is a Steiner pair, the other is a pair of the type of Theorem 3, and conversely.

References

1. H. F. Baker, Introduction to plane geometry.
2. - Principles of geometry, vol. II.
3. J. L. Coolidge, Treatise on the circle and the sphere.
4. W. C. Graustein, Introduction to higher geometry.
5. R. A. Johnson, Modern geometry.

Reed College and

The Milford School

[^0]: Received by the editors August 28, 1948.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

