CLASSIFICATION OF 2-MANIFOLDS WITH SINGULAR POINTS

CHIEN-KE LU

1. Introduction. By a closed 2-manifold, or simply a 2 -manifold, we mean here a two-dimensional connected finite simplicial complex every point of which has a neighborhood homeomorphic to a circular disk, that is, the interior of a circle. If there is a point not having the latter property, we call it a singular point of it.

In this paper, we shall give a complete classification (§2) and some properties (§3) of 2-manifolds with a single singular point. Obviously one may get one such geometrical figure by identifying certain points of a 2-manifold or several ones together. Conversely, we shall show that every such figure may be obtained in such a manner (see (2.3)).

In §4, we generalize these results to 2-manifolds with any number of singularities.
2. The classification. The classification lies in the investigation of the nature of the neighborhoods of the singular point. Let ${ }^{1} \cdot \mathfrak{M}^{2}$ have its singular point at 0 . We first establish the following lemma.

Lemma (2.1). Any neighborhood of 0 is homeomorphic to a finite number, say p, of circular disks with all their centers identified. We call it a p-bundle and call 0 its center; and the boundaries of these p disks are simply said to be the boundary of the p-bundle.

Proof. Consider a simplicial subdivision Ω^{2} of $\cdot \mathfrak{M}^{2}$. We first note that 0 must be a vertex of Ω^{2}. For, if 0 were an inner point of a 2 -simplex, then 0 could not belong to any other simplex and hence would be an ordinary point; and if it were an inner point of a 1simplex, then all the points of this 1 -simplex would be singular points for the same reason. It is also evident that 0 cannot be a vertex of a 1 -simplex unless it is a vertex of a 2 -simplex.

Let 0 be a vertex of a 2 -simplex \Re^{2}. Then there must be many 2 -simplexes including \Re^{2} forming a circular disk surrounding 0 , as otherwise there would be two edges of singularities. Besides, 0 must be a vertex of another 2 -simplex, say ${ }^{\prime} \Re^{2}$, by noting that 0 is a singular point. Hence we get another circular disk consisting of

[^0]2 -simplexes surrounding 0 . In such a way, finally, we obtain p such circular disks (since $\cdot \mathfrak{M}^{2}$ is finite), and the lemma is proved.

We say $\cdot \mathfrak{M}^{2}$ has a singularity of order p at $0 . \mathfrak{M}^{2}-(0)$ in general is not connected and consists of n components $\mathbb{R}_{i}^{2}(i=1, \cdots, n)$. We name $\mathfrak{R}_{i}^{2}+(0)$ a sheet of $\cdot \mathfrak{M}^{2}$. Then $\cdot \mathfrak{M}^{2}$ is the sum of these sheets with the identification of 0 . Moreover, each circular disk of 0 belongs wholly to one and only one sheet. Let us denote these sheets by $\cdot \mathbb{M}_{i}^{2}=\mathbb{R}_{i}^{2}+(0)(i=1, \cdots, n)$, then

$$
\begin{align*}
\mathfrak{M}^{2} & =\sum_{i=1}^{n} \cdot \mathfrak{M}_{i}^{2} \tag{1}\\
p & =\sum_{i=1}^{n} p_{i} \tag{2}
\end{align*}
$$

where p_{i} is the order of 0 in $\cdot \mathfrak{M}_{i}^{2}\left(p_{i}=1\right.$ in case $\cdot \mathfrak{M}_{i}^{2}$ itself is a 2 -manifold).

Hence it is sufficient for us to consider $\cdot \mathfrak{M}_{i}^{2}$ separately. But the structure of $\cdot \mathfrak{M}_{i}^{2}$ is quite clear; for, if we take away the p_{i} circular disks surrounding 0 , the rest is a bounded 2 -manifold with p_{i} holes, the classification of which is already well known. ${ }^{2}$ Therefore we get:

Theorem (2.2). Any 2-manifold with one singularity may be decomposed into the form (1), where $\cdot \mathfrak{M}_{i}^{2}$ are sheets, that is, bounded 2-manifolds with p_{i} holes adjoined with a p_{i}-bundle having its boundary identified with the boundaries of these holes; and all the centers of these bundles are to be identified.

We may, however, consider the p-bundle separately as p circular disks and identify each of their circumferences with each of the boundaries of the holes. Thus we get 2-manifolds, and then identify the p centers. Hence we obtain:

Theorem (2.3). Every 2-manifold with one singular point is the sum of a finite number of 2-manifolds each with some points identified all together.

The preceding two theorems lead us to obtain a 2-manifold with a single singular point from bounded and closed 2 -manifolds respectively. In practice the latter is much more useful than the former.
3. Simple properties. The most evident property of 2 -manifolds with one singularity is contained in the following theorem.

Theorem (3.1). $\cdot \mathfrak{M}^{2}$ and $\cdot \mathfrak{M}^{* 2}$ are homeomorphic if and only if they

[^1]have the same structures, hence necessarily, after suitably arranging their sheets,
\[

$$
\begin{equation*}
\left(p_{i}\right)=\left(p_{i}^{*}\right) \tag{3}
\end{equation*}
$$

\]

(consequently $n=n^{*}, p=p^{*}$).
But we should notice that (3) is not a sufficient condition for $\cdot \mathfrak{M}^{2}$ and $\cdot \mathfrak{M}^{* 2}$ to be homeomorphic, since the corresponding 2-manifolds constituting them may not be homeomorphic. We also note that the property of orientability is preserved:

Theorem (3.2). A 2-manifold with one singularity is orientable if and only if all the 2-manifolds constituting it are orientable.

Now we come to prove the important theorem:
Theorem (3.3). The (integral) homology group \mathfrak{h} of any dimension of a 2-manifold with one singularity is the direct sum of those of its sheets. The homology group of a sheet $\cdot \mathfrak{M}_{1}^{2}$ is the same as that of the 2-manifold \mathfrak{M}_{i}^{2} except for dimension 1 , where \mathfrak{M}_{1}^{2} is the 2-manifold which is the same as $\cdot \mathfrak{M}_{i}^{2}$ but without those p_{i} points to be identified in $\cdot \mathfrak{M}_{i}^{2}$ being identified in \mathfrak{M}_{i}^{2}. For dimension 1, if $\cdot \mathfrak{M}_{i}^{2}$ and \mathfrak{M}_{i}^{2} have the homology groups $\cdot \mathfrak{H}_{i}^{1}$ and \mathfrak{b}_{6}^{1} respectively, then

$$
\begin{equation*}
\cdot \mathfrak{h}_{i}^{1}=\mathfrak{h}_{i}^{1}+\left(p_{i}-1\right) \mathfrak{g} \tag{4}
\end{equation*}
$$

where $k \mathrm{~g}$ represents the direct sum of k free cyclic groups \mathfrak{g}.
Proof. Let us consider the last statement only as the others are obvious. In case $p_{i}=1$, (4) is trivial.

Suppose $0_{1}, \cdots, 0_{p_{i}}$ are the points of \mathfrak{M}_{i}^{2} which are to be identified in \mathfrak{M}_{i}^{2}. Take a sufficiently small simplicial subdivision of \mathfrak{M}_{i}^{2} such that all these points are vertices, and it induces a simplicial subdivision on $\cdot \mathbb{M}_{i}^{2}$. Then any 1 -cycle Z^{1} on $\cdot \mathfrak{M}_{i}^{2}$ is either a 1 -cycle on \mathfrak{M}_{i}^{2} or a broken line joining two 0 's, say 0_{j} and 0_{k}. In the latter case Z^{1} is neither homologous nor division homologous to zero. For if $m Z^{1} \sim 0$ ($m \neq 0$), then there would exist a 2 -chain C^{2} whose boundary $\partial C^{2}=m Z^{1}$ and thence

$$
\partial \partial C^{2}=m \partial Z^{1}=m\left(\pm 0_{j} \pm 0_{k}\right) \neq 0
$$

which is a contradiction. Hence Z^{1} as an element of $\cdot \mathfrak{b}_{i}^{1}$ generates a free cyclic group.

We then join 0_{1} to the other 0 's and get $p_{i}-1$ broken lines, each of which generates a free cyclic group since no two of them are homologous or division homologous to zero by the same reason.

Any broken line between 0_{j} and 0_{k} may be replaced by an algebraic sum of two broken lines starting from 0_{1} and ending in $0_{j}, 0_{k}$ respectively, and a 1 -cycle through these three points on \mathfrak{M}_{i}^{2} will be discussed below.
A 1 -cycle on \mathfrak{M}_{4}^{2} not passing through any 0 is not influenced in constructing $\cdot \mathfrak{M}_{4}^{2}$, while one passing any 0 , say 0_{k}, may be modified by omitting the two edges through it and adding the third edge of the 2 -simplex that is incident with 0_{k} as well as the two edges through 0_{k} (see (2.1)). Hence the homology classes made by the 1 -cycles on \mathfrak{M}_{i}^{2} are unchanged on \mathfrak{M}_{i}^{2}. Thus (3.3) is established.

Corollary (3.4).

$$
\cdot \mathfrak{h}^{1}=\sum_{i=1}^{n} \cdot \mathfrak{h}_{i}^{1}+(p-n) \mathfrak{g} .
$$

This shows us a method for constructing a 2 -complex with any preassigned Betti number whatever.
Analogously, we have the following theorem.
Theorem (3.5). The fundamental group of a 2-manifold with one singularity is the free product of those of its sheets, and the fundamental group \mathfrak{f}_{i} of a sheet $\cdot \mathfrak{M}_{i}^{2}$ is the free product of the fundamental group \mathfrak{f}_{i} of \mathfrak{M}_{i}^{2} and $p_{i}-1$ free cyclic groups. ${ }^{3}$
4. Generalizations. By the finiteness of a 2 -manifold it is evident that the number of singular points on it, if any, is finite. Let ${ }^{\prime} 0,{ }^{\prime \prime} 0, \cdots,{ }^{(m)} 0$ be the only singular points on a 2 -manifold $\cdot \mathfrak{M}^{2}$.

Lemma (2.1) is valid for each ${ }^{(j)} 0(j=1, \cdots, m)$ and we may speak of the order at ${ }^{(j)} 0$, say ${ }^{(j)} p$. The generalized Theorems (2.2) and (2.3) have their natural forms, the latter of which we state as follows.

Theorem (4.1). \mathfrak{M}^{2} is the sum of a finite number of 2-manifolds $\cdot \mathfrak{M}_{i}^{2}(i=1, \cdots, n)$ on which ${ }^{(j)} p_{i}$ points are identified to the point ${ }^{(j)} 0(j=1, \cdots, m)$.

Moreover,

$$
\begin{equation*}
p_{i}=\sum_{j=1}^{m}{ }^{(j)} p_{i}, \quad{ }^{(j)} p=\sum_{i=1}^{n}{ }^{(i)} p_{i}, \quad p=\sum_{i=1}^{n} p_{i}=\sum_{j=1}^{m}{ }^{(i)} p^{\prime} \tag{5}
\end{equation*}
$$

where p_{i} and p are defined as the orders of $\cdot \mathfrak{M}_{i}^{2}$ and $\cdot \mathfrak{M}^{2}$ respectively.

[^2]Theorem (3.1) now takes the form:
Theorem (4.2). $\cdot \mathfrak{M}^{2}$ and $\cdot \mathfrak{M}^{* 2}$ are homeomorphic if and only if they have the same structures, hence necessarily, after suitably arranging their sheets and the order of their singular points,

$$
\begin{equation*}
\left({ }^{(j)} p_{i}\right)=\left({ }^{(j)} p_{i}^{*}\right) \tag{6}
\end{equation*}
$$

(consequently $m=m^{*}, n=n^{*}, p=p^{*}$).
Theorem (3.2) is true in its original form. We establish now the following theorem.

Theorem (4.3). The homology group $\cdot \mathfrak{h}_{i}^{1}$ of $\cdot \mathfrak{M}_{i}^{2}$ is given by

$$
\begin{equation*}
\cdot \mathfrak{h}_{i}^{1}=\mathfrak{h}_{i}^{1}+\left(p_{i}-m\right) \mathfrak{g} \tag{7}
\end{equation*}
$$

where \mathfrak{G}_{t}^{1} is the homology group of \mathfrak{M}_{i}^{2}, the 2-manifold which is the same as $\cdot \mathfrak{M}_{i}^{2}$ but without any points being identified.

Proof. For each j we consider the ${ }^{(j)} p_{i}$ points to be identified to ${ }^{(j)} 0$ as in the proof of (3.3), that is, join broken lines from one of them to all the others. They are 1-cycles on $\cdot \mathfrak{M}_{i}^{2}$, each of which generates a free cyclic group in \mathfrak{h}_{i}^{1} and any two of which are neither homologous nor division homologous to zero on \mathfrak{M}_{i}^{2}. Any 1-cycle on $\cdot \mathfrak{M}_{i}^{2}$ may be replaced by an algebraic sum of these broken lines and a 1 -cycle on \mathfrak{M}_{i}^{2}. Hence by the same reason as in (3.3), from the first equation of (5) we have (7), and thus the theorem is proved.

In order to get the homology group $\cdot \mathfrak{h}^{1}$ of $\cdot \mathfrak{M}^{2}$, we again introduce a lemma which may be readily proved.

Lemma (4.4). If Ω is a connected simplicial complex of any dimension and P_{1}, \cdots, P_{k} are k arbitrary distinct points on it, and Ω^{*} is the complex made by Ω in addition with the 1 -simplexes $\left(P_{1} P_{2}\right),\left(P_{1} P_{3}\right), \cdots$ ($P_{1} P_{k}$) (not in Ω); then

$$
\begin{equation*}
\mathfrak{b}^{* 1}=\mathfrak{h}^{1}+(k-1) \mathfrak{g}, \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathfrak{h}^{1}=\mathfrak{b}^{* 1}-(k-1) \mathfrak{g}, \tag{8}
\end{equation*}
$$

where \mathfrak{h}^{1} and $\mathfrak{h}^{* 1}$ are homology groups of Ω and Ω^{*} respectively and the minus sign indicates a difference group.

Eventually, we have the following theorem.
Theorem (4.5). The homology group $\cdot \mathfrak{h}^{1}$ of $\cdot \mathfrak{M}^{2}$ may be written as

$$
\begin{equation*}
\cdot \mathfrak{h}^{1}=\sum_{i=1}^{n} \mathfrak{h}_{i}^{1}+(p-n-m+1) \mathfrak{g} . \tag{9}
\end{equation*}
$$

Proof. In constructing 1 -simplexes (${ }^{\prime} 0^{\prime \prime} 0$), $\cdots,\left(^{\left(0^{(m)} 0\right)}\right.$ (not belonging to $\cdot \mathfrak{M}^{2}$), we get $\cdot \mathfrak{M}^{* 2}$, $\cdot \mathfrak{M}_{1}^{* 2}, \cdots$ as in the lemma. By (7) and (8), we have

$$
\begin{equation*}
\cdot \mathfrak{h}_{i}^{* 1}=\mathfrak{h}_{i}^{1}+\left(p_{i}-1\right) \mathfrak{g}, \tag{10}
\end{equation*}
$$

where $\cdot \mathfrak{H}_{i}^{* 1}$ is the homology group of $\cdot \mathfrak{M}_{1}^{* 2}$. The newly constructed simplexes form a connected 1-complex whose 1-dimensional homology group contains the identity only. Therefore from a famous theorem (cf. Seifert-Threfall, p. 179), by (5) we get

$$
\begin{equation*}
\cdot \mathfrak{b}^{* 1}=\sum_{i=1}^{n} \mathfrak{b}_{i}^{1}+(p-n) \mathfrak{g}, \tag{11}
\end{equation*}
$$

where $\cdot \mathfrak{b}^{* 1}$ is the homology group of $\cdot \mathfrak{M}^{* 2}$. Therefore (9) is finally established in virtue of (11) and (8)'.

Theorem (3.5) may be extended analogously.
National Wuhan University

A NOTE ON EQUICONTINUITY

M. K. FORT, JR.

During a recent seminar discussion of his paper Transitivity and equicontinuity [1], ${ }^{1}$ W. H. Gottschalk proposed the following question:
"Is the center of every algebraically transitive group of homeomorphisms on a compact metric space equicontinuous?"

An affirmative answer to the above question is given in this note.

1. Definitions. We let X and Y be compact metric spaces and let d be the metric for Y.

A set F of functions on X into X is algebraically transitive if corresponding to each pair p and q of points in X there exists $f \in F$ such that $f(p)=q$.

A sequence $\left[g_{n}\right]$ of functions on X into Y converges to a function

[^3] 1948.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

[^0]: Received by the editors September 15, 1948.
 ${ }^{1}$ We use the notation \mathfrak{M} instead of a dot directly over \mathfrak{M} for typographical convenience.

[^1]: ${ }^{2}$ Cf., for example, Seifert-Threlfall, Lehrbuch der Topologie, 1934, §40.

[^2]: ${ }^{3}$ We may first prove (3.5) and so (3.3) follows immediately by a relation between the homology group and the fundamental group, cf. ibid. p. 173.

[^3]: Presented to the Society, November 27, 1948; received by the editors August 10,

