CLASSIFICATION OF 2-MANIFOLDS WITH SINGULAR POINTS

CHIEN-KE LU

1. Introduction. By a *closed 2-manifold*, or simply a 2-manifold, we mean here a two-dimensional connected finite simplicial complex every point of which has a neighborhood homeomorphic to a circular disk, that is, the interior of a circle. If there is a point not having the latter property, we call it a *singular point* of it.

In this paper, we shall give a complete classification (§2) and some properties (§3) of 2-manifolds with a single singular point. Obviously one may get one such geometrical figure by identifying certain points of a 2-manifold or several ones together. Conversely, we shall show that every such figure may be obtained in such a manner (see (2.3)).

In §4, we generalize these results to 2-manifolds with any number of singularities.

2. The classification. The classification lies in the investigation of the nature of the neighborhoods of the singular point. Let¹ \mathfrak{M}^2 have its singular point at 0. We first establish the following lemma.

LEMMA (2.1). Any neighborhood of 0 is homeomorphic to a finite number, say p, of circular disks with all their centers identified. We call it a p-bundle and call 0 its center; and the boundaries of these p disks are simply said to be the boundary of the p-bundle.

PROOF. Consider a simplicial subdivision \Re^2 of \mathfrak{M}^2 . We first note that 0 must be a vertex of \Re^2 . For, if 0 were an inner point of a 2-simplex, then 0 could not belong to any other simplex and hence would be an ordinary point; and if it were an inner point of a 1-simplex, then all the points of this 1-simplex would be singular points for the same reason. It is also evident that 0 cannot be a vertex of a 1-simplex unless it is a vertex of a 2-simplex.

Let 0 be a vertex of a 2-simplex \Re^2 . Then there must be many 2-simplexes including \Re^2 forming a circular disk surrounding 0, as otherwise there would be two edges of singularities. Besides, 0 must be a vertex of another 2-simplex, say ' \Re^2 , by noting that 0 is a singular point. Hence we get another circular disk consisting of

Received by the editors September 15, 1948.

 $^{^1\,}We$ use the notation $\cdot\mathfrak{M}$ instead of a dot directly over \mathfrak{M} for typographical convenience.

2-simplexes surrounding 0. In such a way, finally, we obtain p such circular disks (since \mathfrak{M}^2 is finite), and the lemma is proved.

We say \mathfrak{M}^2 has a singularity of order p at 0. $\mathfrak{M}^2 - (0)$ in general is not connected and consists of n components \mathfrak{L}_i^2 $(i=1, \dots, n)$. We name $\mathfrak{L}_i^2 + (0)$ a sheet of \mathfrak{M}^2 . Then \mathfrak{M}^2 is the sum of these sheets with the identification of 0. Moreover, each circular disk of 0 belongs wholly to one and only one sheet. Let us denote these sheets by $\mathfrak{M}_i^2 = \mathfrak{L}_i^2 + (0)$ $(i=1, \dots, n)$, then

(1)
$$\cdot \mathfrak{M}^2 = \sum_{i=1}^n \cdot \mathfrak{M}_i^2$$

$$(2) p = \sum_{i=1}^{n} p_i,$$

where p_i is the order of 0 in \mathfrak{M}_i^2 ($p_i = 1$ in case \mathfrak{M}_i^2 itself is a 2-manifold).

Hence it is sufficient for us to consider \mathfrak{M}_i^2 separately. But the structure of \mathfrak{M}_i^2 is quite clear; for, if we take away the p_i circular disks surrounding 0, the rest is a bounded 2-manifold with p_i holes, the classification of which is already well known.² Therefore we get:

THEOREM (2.2). Any 2-manifold with one singularity may be decomposed into the form (1), where \mathfrak{M}_4^2 are sheets, that is, bounded 2-manifolds with p_i holes adjoined with a p_i -bundle having its boundary identified with the boundaries of these holes; and all the centers of these bundles are to be identified.

We may, however, consider the *p*-bundle separately as p circular disks and identify each of their circumferences with each of the boundaries of the holes. Thus we get 2-manifolds, and then identify the *p* centers. Hence we obtain:

THEOREM (2.3). Every 2-manifold with one singular point is the sum of a finite number of 2-manifolds each with some points identified all together.

The preceding two theorems lead us to obtain a 2-manifold with a single singular point from bounded and closed 2-manifolds respectively. In practice the latter is much more useful than the former.

3. Simple properties. The most evident property of 2-manifolds with one singularity is contained in the following theorem.

THEOREM (3.1). \mathfrak{M}^2 and \mathfrak{M}^{*2} are homeomorphic if and only if they

² Cf., for example, Seifert-Threlfall, Lehrbuch der Topologie, 1934, §40.

have the same structures, hence necessarily, after suitably arranging their sheets,

$$(3) (p_i) = (p_i^*)$$

(consequently $n = n^*$, $p = p^*$).

But we should notice that (3) is not a sufficient condition for \mathfrak{M}^2 and \mathfrak{M}^{*2} to be homeomorphic, since the corresponding 2-manifolds constituting them may not be homeomorphic. We also note that the property of orientability is preserved:

THEOREM (3.2). A 2-manifold with one singularity is orientable if and only if all the 2-manifolds constituting it are orientable.

Now we come to prove the important theorem:

THEOREM (3.3). The (integral) homology group \mathfrak{h} of any dimension of a 2-manifold with one singularity is the direct sum of those of its sheets. The homology group of a sheet \mathfrak{M}_4^2 is the same as that of the 2-manifold \mathfrak{M}_4^2 except for dimension 1, where \mathfrak{M}_4^2 is the 2-manifold which is the same as \mathfrak{M}_4^2 but without those p_i points to be identified in \mathfrak{M}_4^2 being identified in \mathfrak{M}_4^2 . For dimension 1, if \mathfrak{M}_4^2 and \mathfrak{M}_4^2 have the homology groups \mathfrak{h}_4^1 and \mathfrak{h}_4^1 respectively, then

(4)
$$\mathfrak{h}_{i}^{1} = \mathfrak{h}_{i}^{1} + (p_{i} - 1)\mathfrak{g}$$

where kg represents the direct sum of k free cyclic groups g.

PROOF. Let us consider the last statement only as the others are obvious. In case $p_i = 1$, (4) is trivial.

Suppose $0_1, \dots, 0_{p_i}$ are the points of \mathfrak{M}_i^2 which are to be identified in \mathfrak{M}_i^2 . Take a sufficiently small simplicial subdivision of \mathfrak{M}_i^2 such that all these points are vertices, and it *induces* a simplicial subdivision on \mathfrak{M}_i^2 . Then any 1-cycle Z^1 on \mathfrak{M}_i^2 is either a 1-cycle on \mathfrak{M}_i^2 or a broken line joining two 0's, say 0_j and 0_k . In the latter case Z^1 is neither homologous nor division homologous to zero. For if $mZ^1 \sim 0$ $(m \neq 0)$, then there would exist a 2-chain C^2 whose boundary $\partial C^2 = mZ^1$ and thence

$$\partial \partial C^2 = m \partial Z^1 = m(\pm 0_j \pm 0_k) \neq 0,$$

which is a contradiction. Hence Z^1 as an element of \mathfrak{H}^1_t generates a free cyclic group.

We then join 0_1 to the other 0's and get p_i-1 broken lines, each of which generates a free cyclic group since no two of them are homologous or division homologous to zero by the same reason.

1949]

Any broken line between 0_j and 0_k may be replaced by an algebraic sum of two broken lines starting from 0_1 and ending in 0_j , 0_k respectively, and a 1-cycle through these three points on \mathfrak{M}_i^2 will be discussed below.

A 1-cycle on \mathfrak{M}_{i}^{2} not passing through any 0 is not influenced in constructing \mathfrak{M}_{i}^{2} , while one passing any 0, say 0_{k} , may be modified by omitting the two edges through it and adding the third edge of the 2-simplex that is incident with 0_{k} as well as the two edges through 0_{k} (see (2.1)). Hence the homology classes made by the 1-cycles on \mathfrak{M}_{i}^{2} are unchanged on \mathfrak{M}_{i}^{2} . Thus (3.3) is established.

COROLLARY (3.4).

$$\cdot \mathfrak{h}^{1} = \sum_{i=1}^{n} \cdot \mathfrak{h}^{1}_{i} + (p - n)\mathfrak{g}.$$

This shows us a method for constructing a 2-complex with any preassigned Betti number whatever.

Analogously, we have the following theorem.

THEOREM (3.5). The fundamental group of a 2-manifold with one singularity is the free product of those of its sheets, and the fundamental group f_i of a sheet \mathfrak{M}_4^2 is the free product of the fundamental group f_i of \mathfrak{M}_4^2 and $p_i - 1$ free cyclic groups.³

4. Generalizations. By the finiteness of a 2-manifold it is evident that the number of singular points on it, if any, is finite. Let '0, ''0, \cdots , (m)0 be the only singular points on a 2-manifold \mathfrak{M}^2 .

Lemma (2.1) is valid for each ${}^{(j)}0$ $(j=1, \dots, m)$ and we may speak of the order at ${}^{(j)}0$, say ${}^{(j)}p$. The generalized Theorems (2.2) and (2.3) have their natural forms, the latter of which we state as follows.

THEOREM (4.1). \mathfrak{M}^2 is the sum of a finite number of 2-manifolds \mathfrak{M}_4^2 $(i=1, \dots, n)$ on which ${}^{(j)}p_i$ points are identified to the point ${}^{(j)}0$ $(j=1, \dots, m)$.

Moreover,

(5)
$$p_i = \sum_{j=1}^m {}^{(i)} p_i, \qquad {}^{(i)} p = \sum_{i=1}^n {}^{(i)} p_i, \qquad p = \sum_{i=1}^n p_i = \sum_{j=1}^m {}^{(j)} p_i,$$

where p_i and p are defined as the orders of \mathfrak{M}_i^2 and \mathfrak{M}^2 respectively.

1096

³ We may first prove (3.5) and so (3.3) follows immediately by a relation between the homology group and the fundamental group, cf. ibid. p. 173.

Theorem (3.1) now takes the form:

THEOREM (4.2). \mathfrak{M}^2 and \mathfrak{M}^{*2} are homeomorphic if and only if they have the same structures, hence necessarily, after suitably arranging their sheets and the order of their singular points,

(6)
$$\binom{(i)p_i}{j} = \binom{(i)p_i^*}{j}$$

(consequently $m = m^*$, $n = n^*$, $p = p^*$).

Theorem (3.2) is true in its original form. We establish now the following theorem.

THEOREM (4.3). The homology group \mathfrak{h}_{i}^{1} of \mathfrak{M}_{i}^{2} is given by

(7)
$$\dot{\mathfrak{h}}_{i}^{1} = \mathfrak{h}_{i}^{1} + (p_{i} - m)\mathfrak{g},$$

where \mathfrak{h}^1_i is the homology group of \mathfrak{M}^2_i , the 2-manifold which is the same as \mathfrak{M}^2_i but without any points being identified.

PROOF. For each j we consider the ${}^{(j)}p_i$ points to be identified to ${}^{(j)}0$ as in the proof of (3.3), that is, join broken lines from one of them to all the others. They are 1-cycles on \mathfrak{M}_i^2 , each of which generates a free cyclic group in \mathfrak{H}_i^1 and any two of which are neither homologous nor division homologous to zero on \mathfrak{M}_i^2 . Any 1-cycle on \mathfrak{M}_i^2 may be replaced by an algebraic sum of these broken lines and a 1-cycle on \mathfrak{M}_i^2 . Hence by the same reason as in (3.3), from the first equation of (5) we have (7), and thus the theorem is proved.

In order to get the homology group $\cdot \mathfrak{h}^1$ of \mathfrak{M}^2 , we again introduce a lemma which may be readily proved.

LEMMA (4.4). If \Re is a connected simplicial complex of any dimension and P_1, \dots, P_k are k arbitrary distinct points on it, and \Re^* is the complex made by \Re in addition with the 1-simplexes $(P_1P_2), (P_1P_3), \dots$ (P_1P_k) (not in \Re); then

(8)
$$\mathfrak{h}^{*1} = \mathfrak{h}^1 + (k-1)\mathfrak{g},$$

or

$$\mathfrak{h}^{1} = \mathfrak{h}^{*1} - (k-1)\mathfrak{g},$$

where \mathfrak{h}^1 and \mathfrak{h}^{*1} are homology groups of \mathfrak{R} and \mathfrak{R}^* respectively and the minus sign indicates a difference group.

Eventually, we have the following theorem.

THEOREM (4.5). The homology group \mathfrak{h}^1 of \mathfrak{M}^2 may be written as

M. K. FORT

PROOF. In constructing 1-simplexes ('0''0), \cdots , $('0^{(m)}0)$ (not belonging to \mathfrak{M}^2), we get \mathfrak{M}^{*2} , \mathfrak{M}_1^{*2} , \cdots as in the lemma. By (7) and (8), we have

(10)
$$\dot{\mathfrak{h}}_{i}^{*1} = \mathfrak{h}_{i}^{1} + (p_{i} - 1)\mathfrak{g},$$

where \mathfrak{H}_{i}^{*1} is the homology group of \mathfrak{M}_{i}^{*2} . The newly constructed simplexes form a connected 1-complex whose 1-dimensional homology group contains the identity only. Therefore from a famous theorem (cf. Seifert-Threfall, p. 179), by (5) we get

where \mathfrak{h}^{*1} is the homology group of \mathfrak{M}^{*2} . Therefore (9) is finally established in virtue of (11) and (8)'.

Theorem (3.5) may be extended analogously.

NATIONAL WUHAN UNIVERSITY

A NOTE ON EQUICONTINUITY

M. K. FORT, JR.

During a recent seminar discussion of his paper *Transitivity and* equicontinuity [1],¹ W. H. Gottschalk proposed the following question:

"Is the center of every algebraically transitive group of homeomorphisms on a compact metric space equicontinuous?"

An affirmative answer to the above question is given in this note.

1. Definitions. We let X and Y be compact metric spaces and let d be the metric for Y.

A set F of functions on X into X is algebraically transitive if corresponding to each pair p and q of points in X there exists $f \in F$ such that f(p) = q.

A sequence $[g_n]$ of functions on X into Y converges to a function

¹ Numbers in brackets refer to the bibliography at the end of the paper.

[December

1098

Presented to the Society, November 27, 1948; received by the editors August 10, 1948.