ON THE NUMBER OF POSITIVE INTEGERS LESS THAN x AND FREE OF PRIME DIVISORS GREATER THAN x^e

V. RAMASWAMI

Dr. Chowla recently raised the following question regarding the number of positive integers less than x and free of prime divisors greater than x^c , which number is here denoted by f(x, c): For every fixed positive c, is lim inf $_{x \to \infty} f(x, c)/x > 0$?

This paper, while incidentally answering this question in the affirmative, proves more, in fact the best¹ possible result in this direction, namely:

THEOREM A. A function $\phi(c)$ defined for all c > 0 exists such that (1) $\phi(c) > 0$ and is continuous for c > 0; (2) for any fixed c

 $f(x, c) = x\phi(c) + O(x/\log x)$

where the "O" is uniform for c greater than or equal to any given positive number.

Notation. The following symbols are used for the entities mentioned against them:

 p, p_r : any prime.

S(x, p): the set of integers less than x each divisible by p and free of prime divisors greater than p.

T(x, p): the set of integers less than x each free of prime divisors greater than p.

N[K]: the number of members of K, where K denotes any finite set of integers.

 $F(t): \sum_{p \leq t} (1/p)$ where p runs through primes.

Preliminary lemmas.

LEMMA I. For $c \ge 1$, the theorem is true, and

$$f(x, c) = x\phi(c) + O(1).$$

PROOF. This is obvious. In fact, for these values of c, $\phi(c) = 1$, and

$$\left|f(x, c) - x\phi(c)\right| \leq 1.$$

LEMMA II. If $p_1 \neq p_2$, the sets $S(x, p_1)$ and $S(x, p_2)$ are distinct, and

Received by the editors January 12, 1948, and, in revised form, July 22, 1948.

¹ The "O" of the theorem cannot be improved upon, as will be seen in the sequel.

N[S(x, p)] = N[T(x/p, p)].

PROOF. This is obvious, from the unique factorization theorem.

LEMMA III. The number of primes less than or equal to x is $O(x/\log x)$ and $F(x) = \log \log x + b + O(1/\log x)$ where b is constant.

This is well known and is an "elementary theorem" in the theory of primes.

LEMMA IV. If $0 < c_1 \le 1$, and Theorem A is true for $c \ge c_1$, then it is true for $c \ge c_1/(1+c_1)$.

PROOF. By hypothesis $\phi(c)$ is defined for $c \ge c_1$, and

 $\phi(c) > 0$ and is continuous for $c \ge c_1$,

(3)
$$f(x, c) = x\phi(c) + O(x/\log x) \text{ uniformly for } c_1 \leq c \leq 1,$$
$$f(x, c) = x\phi(c) + O(1) \text{ for } c \geq 1, \qquad \text{by Lemma 1.}$$

Also, obviously,

(4) $\phi(c)$ is bounded and monotonic increasing, though possibly not strictly so, for $c \ge c_1$.

Let now

(5)
$$c_2 = c/(1+c_1)$$
 and $c_2 \leq d \leq c_1$ (obviously $c_2 < c_1$).

Now

$$f(x, c_1) - f(x, d) = \sum_{x^d
$$= \sum_{x^d
$$= \sum_{x^d
$$= \sum_{x^d
$$+ \sum_{p \ge x^{1/2}} O(1) + \sum_{p < x^{1/2}} O\left(\frac{x}{p \log (x/p)}\right)$$$$$$$$$$

by (3) and (5), since in this range

(6)
$$\frac{\log p}{\log x - \log p} > \frac{d}{1-d} \ge \frac{c_2}{1-c_2} = c_1.$$

Hence

V. RAMASWAMI

[December

 c_1).

(6a)
$$f(x, c_1) - f(x, d) = x \int_{x^d}^{x^{c_1}} \phi\left(\frac{\log t}{\log x - \log t}\right) dF(t) + O\left(\frac{x}{\log x}\right)$$

by Lemma III, where the "O" is uniform with respect to d in virtue of (3) and (6), and the Riemann-Stieltjes integral on the right exists in virtue of (4) and the continuity of $\phi(c)$ for $c \ge c_1$. Using integration by parts for the integral and using (3) and (4) and Lemma III, we obtain (see Note 1a)

$$f(x, c_1) - f(x, d) = x \int_{x^d}^{x^{c_1}} \phi\left(\frac{\log t}{\log x - \log t}\right) \frac{dt}{t \log t} + O\left(\frac{x}{\log x}\right)$$

(uniformly for $c_2 \leq d \leq c_1$)

$$= x \int_{d}^{c_{1}} \phi\left(\frac{u}{1-u}\right) \frac{du}{u} + O\left(\frac{x}{\log x}\right)$$

(uniformly for $c_{2} \leq d \leq$

This, together with (3), proves the existence of $\phi(c)$ for $c \ge c_1/(1+c_1)$, though it is not yet clear whether $\phi(c) > 0$ in $c_1/(1+c_1) \le c \le c_1$, and is continuous therein.

Now, let

(8)
$$\frac{c_1}{1+c_1} \leq d_1 < d_2 \leq c_1.$$

Then (7) gives

$$\frac{f(x, d_2) - f(x, d_1)}{x} = \int_{d_1}^{d_2} \phi\left(\frac{u}{1-u}\right) \frac{du}{u} + O\left(\frac{1}{\log x}\right)$$
$$\rightarrow \int_{d_1}^{d_2} \phi\left(\frac{u}{1-u}\right) du \qquad \text{as } x \to \infty.$$

Hence

(9)
$$\phi(d_2) - \phi(d_1) = \int_{d_1}^{d_2} \phi\left(\frac{u}{1-u}\right) \frac{du}{u} > 0,$$

by (3), since in the range $d_1 < u < d_2$, we have $u/(1-u) > c_1$.

This shows that $\phi(d_2) \neq 0$ for any d_2 of the kind specified in (8); for, if $\phi(d_2)$ were zero, then obviously $\phi(d_1)$ would be zero and their difference also would be so, contrary to (9). Also, obviously $\phi(d_2) \geq 0$. Hence

(10)
$$\phi(c) > 0$$
 for $c > c_1/(1 + c_1)$.

(7)

Also by (9) and the hypothesis

(11) $\phi(c)$ is continuous for $c \ge c_1/(1+c_1)$.

Using now the results (7), (10), and (11) and repeating the above argument with $c_1/(1+c_1)$ in place of c_1 , and noting that the positiveness of $\phi(c_1)$ is not needed in the above argument, it follows that $\phi(c_1/(1+c_1)) > 0$.

This completes the proof of the lemma.

PROOF OF THE THEOREM. Lemma I holds for $c \ge 1$ and Lemma IV for 0 < c < 1, if we note that the hypotheses of the lemma are satisfied for $c_1 = 1$, and hence by the result of the lemma for $c_1 = 1/2$ and hence by induction for $c_1 = 1/n$ (*n* positive integral), and that $1/n \rightarrow 0$ as $n \rightarrow \infty$.

COROLLARY. For $0 < c_1 < c_2 \leq 1$,

$$\phi(c_2) - \phi(c_1) = \int_{c_1}^{c_2} \phi\left(\frac{u}{1-u}\right) \frac{du}{u}$$

(see also Note 1b).

PROOF. A finite set of numbers, $d_0, d_1, d_2, \cdots, d_n$, obviously exists such that

$$c_1 = d_0 < d_1 < d_2 < \cdots < d_n = c_2;$$

and

$$d_r \ge \frac{d_{(r+1)}}{1+d_{(r+1)}}$$
 $(r = 0, 1, 2, \cdots, n-1).$

To each of these intervals (d_r, d_{r+1}) apply the result (9) and add; the corollary follows at once.

REMARKS. The "O" of the theorem cannot be improved upon. This can be seen as follows:

Obviously f(x, 1) = x + O(1) and

$$f(x, 1) - f\left(x, \frac{1}{2}\right) = \sum_{x^{1/2}$$

where $G(x) = \sum_{x^{1/2} and <math>\{y\}$ denotes fractional part of y.

Hence $f(x, 1/2) = x(1 - \log 2) + o(x/\log x) + G(x)$ by the prime number theory (see Note 1c). But $G(x) > kx/\log x$ where k is a fixed positive number, as can be easily seen from the prime number theory.

NOTE 1. (a) The deduction of (7) from (6a) is based on the following:

1949]

We observe that the Riemann-Stieltjes integral

$$\int_{x^d}^{x^{e_1}} \phi\left(\frac{\log t}{\log x - \log t}\right) dF(t) = \left[F(t)\phi\left(\frac{\log t}{\log x - \log t}\right)\right]_{x^d}^{x^{e_1}}$$
$$-\int_{x^d}^{x^{e_1}} F(t) d\phi$$
$$= \left[(\log \log t + b)\phi\left(\frac{\log t}{\log x - \log t}\right)\right]_{x^d}^{x^{e_1}}$$
$$-\int_{x^d}^{x^{e_1}} (\log \log t + b) d\phi + R$$

which, by the substitution $t = x^u$ performed after integration by parts of the integral on the right, equals

$$\int_{d}^{c_{1}} \phi\left(\frac{u}{1-u}\right) \frac{du}{u} + R$$

where, by Lemma III,

$$R = O\left(\frac{1}{d \log x}\right) - O\left(\frac{1}{d \log x}\right) - \int_{x^d}^{x^{\theta_1}} O\left(\frac{1}{\log t}\right) d\phi$$

where, on account of (4), the integral also is $O(d^{-1} \log^{-1} x)$.

(b) The integral equation for $\phi(c)$ may be used for successive computation of the function. Starting with $\phi(c) = 1$ for $c \ge 1$, one observes that $c/(1-c) \ge 1$ for $1/2 \le c < 1$ so that

$$\phi(c) = 1 - \int_{c}^{1} \frac{du}{u} = 1 + \log c \quad \text{for } 1/2 \le c \le 1.$$

This result can be used to compute $\phi(c)$ on the interval (1/3, 1/2) and so on; and an easy induction shows that

$$\phi(c) = 1 + \sum_{r=1}^{\infty} (-1)^r \psi_r(c), \qquad c > 0,$$

where $\psi_1(c) = \int_c^1 du/u$ for $c \leq 1$, and $\psi_1(c) = 0$ for c > 1, and

$$\psi_r(c) = \int_c^1 \psi_{r-1}\left(\frac{u}{1-u}\right)\frac{du}{u}, \qquad \text{for } c > 0.$$

One notes that $\psi_r(c) = 0$ for $c \ge 1/r$ (so that the infinite series is actually a finite sum) and also that the functions $\psi_r(c)$, $r \ge 2$, are not elementary functions.

(c) From the known result $\pi(x) = x/\log x + x/\log^2 x + o(x/\log^2 x)$ follows

$$\sum_{x^{1/2}
$$= -\frac{1}{\log x} + o\left(\frac{1}{\log x}\right)$$
$$+ \int_{x^{1/2}}^{x} \left[\frac{t}{\log t} + \frac{t}{\log^2 t} + o\left(\frac{t}{\log^2 t}\right)\right] \frac{dt}{t^2}$$
$$= \log 2 + o\left(\frac{1}{\log x}\right).$$$$

NOTE 2. From the corollary to the theorem follows, for $0 < c_1 < c_2 \le c_1/(1-c_1)$ and $c_2 \le 1$,

$$\phi(c_2) - \phi(c_1) \ge \phi(c_2) \log c_2/c_1 > \phi(c_2)(1 - c_1/c_2)$$

from which follows $\phi(c_2)/c_2 > \phi(c_1)/c_1$, whence, arguing as in the proof of the corollary, one sees that $\phi(c)/c$ is a strictly monotonic increasing function in $0 < c \leq 1$.

 $\phi(c)$ has other interesting properties, which will be published shortly. One such is that for every fixed $n, \phi(c)/c^n \rightarrow 0$ as $c \rightarrow +0$. This result, together with the now obvious result

- -

$$\lim_{x\to\infty}\frac{f(x, c)}{x} = \phi(c) > 0, \quad c \text{ fixed and positive,}$$

was communicated to Dr. Chowla in August of 1947. I understand from his reply that Vijayaraghavan already was in possession of a proof of his (Chowla's) conjecture that

$$\liminf_{x\to\infty}\frac{f(x, c)}{x} > 0, \quad \text{for } c \text{ positive and fixed.}$$

In conclusion, I wish to thank the referees for their suggestions which have led to the clarification and additions of content contained in Note 1.

ANDHRA UNIVERSITY

1949]