
RAMIFICATIONS, OLD AND NEW, OF 
THE EIGENVALUE PROBLEM 

HERMANN WEYL 

Since this is a lecture dedicated to the memory of Josiah Willard 
Gibbs let me start with that purely mathematical discovery which 
Gibbs contributed to the theory of Fourier series. Fourier series have 
to do with the eigenvalues and eigenfunctions of the oldest, simplest, 
and most important of all spectrum problems, that of the vibrating 
string. In preparing this lecture, the speaker has assumed that he is 
expected to talk on a subject in which he had some first-hand experi
ence through his own work. And glancing back over the years he 
found that the one topic to which he has returned again and again is 
the problem of eigenvalues and eigenfunctions in its various ramifi
cations. I t so happens that right a t the beginning of my mathe
matical career I wrote two papers on what we now call the Gibbs 
phenomenon. 

1. Gibbs phenomenon. Take a simple periodic function with a dis
continuity, for example, the function l°(x) of period 2x which equals 
0 f or — 7T <x < 0 and 1 for 0 <x <w. In a letter to the editor of Nature 
published on April 27, 1899, Gibbs, correcting a statement in a previ
ous letter, pointed out that the limit of the graphs of the partial 
sums y~l°n(x) of the Fourier series of l°(x) includes not only the 
vertical ascent from the level 0 to the level 1 at x = 0, but extends 
vertically beyond it by a specific amount. A. A. Michelson had 
started the discussion in Nature by criticizing the way in which the 
mathematicians are wont to describe the limit of the sequence of 
those partial sums; he had pleaded for adding to the two horizontal 
levels the vertical precipice. Today we find in the notion of uniform 
convergence the most adequate analysis of the phenomenon. Intro
duce the sinus integral 

1 r x sin £ 
S i ( * ) « — I - — d$ 

and consider a closed interval J, say — 7 r / 2 ^ # < x / 2 , containing 
only the one discontinuity at x = 0. I t is, of course, not true that the 
difference between l°(x) and the nth partial sum lj(x) converges 
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uniformly to zero in J, but it is true that in(x) —Si (nx) does so. Thus 
the graph of l2(x) for large n is essentially that of the undulating 
function Si (x) compressed at the ratio \\n in the ^-direction. 

Instead of direct summation one can apply to infinite series, in 
particular to Fourier series, other methods of summation. Let me 
mention only one here: in the Fourier series ]Cn»-«>#neinx add the 
factor e~"n2' to the wth term and then let the positive parameter 
/ = time in the resulting sum 

ane-n\inx 

n 

converge to zero. Since that sum is a solution of the equation of heat 
conduction 

d2u/dx2 - du/dt « 0, 

I call this the heat conduction summation. The Gibbs phenomenon for 
this summation is ruled by the function 

Er(a) = f V«\£ 

in the same sense as it is ruled by Si (x) for the direct summation. This 
is an immediate consequence of the fact that Er (x/2t112) is actually 
a solution—though not a periodic one—of the heat equation. 

In the two papers just mentioned [ l ] 1 I considered the Gibbs phe
nomenon for a certain general type of summation methods. My chief 
concern was with the simplest two-dimensional case of eigenfunc-
tions, namely Laplace's expansion of functions on a sphere in terms 
of spherical harmonics. Nothing new occurs if the function has a dis
continuity along a smooth line with a continuous tangent. But quite 
an impressive mountain landscape develops in the neighborhood of a 
point where this line makes an angle. There was one specific one-di
mensional problem which attracted my attention. I t deals with a 
circular metal ring consisting of two halves of different conductivities 
a and |8. Assume the normalization a+j3 = 1. If one of the halves has 
a temperature of 100° C. at the time 2 = 0, the other of 0°, how will 
the temperature level off in the progress of time? The solution can be 
easily expressed by means of the function Er, and this gives the Gibbs 
phenomenon for the heat conduction summation of the correspond
ing eigenfunction expansion. The Gibbs phenomenon for direct sum-

1 The letters (A), (B), • • • refer to a number of notes printed at the end of the 
paper (and not included in the actual lecture as delivered at the Columbus meeting). 
The bold face numerals [ l ] , • • • refer to the bibliography. 
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mation is a more subtle question because the distribution of the eigen
values X depends on the arithmetical character of the numbers a 
and j3. Only if they are rational, the problem may be settled by fairly 
direct computation (A). The result would carry over to an arbitrary 
irrational a if it were true that a can be approximated by a sequence 
of fractions an/cn (n= 1, 2, • • • ) such that 

n(a — an/cn) —> 0, cn/n —> 0 f or n —> <*>. 

It is simple enough to show that this can be done, and thus to de
termine the Gibbs phenomenon for arbitrary conductivities a, ]8. 
Our lemma on Diophantine approximations proves at the same time 
the equidistribution mod. 1 of the multiples na of an irrational 
number a. 

When, not so long after, I learned through Felix Bernstein about 
the problem of mean motion in Lagrange's linear theory of perturba
tion for the planetary system, a problem P. Bohl had connected with 
that of equidistribution mod. 1, I remembered this investigation and 
tried to settle the question of equidistribution in a more general form 
[2]. This is an example of how experience in one field of mathe
matics may give one the lead in an entirely different field. I t is chiefly 
for this lesson that I have mentioned here this early work of mine, by 
which, in a very modest way, I paid homage to the genius of Gibbs 
about forty years ago.—Incidentally, Fourier series provided the 
basis for the analytic method which I brought to bear on the general 
problem of deciding whether a given sequence of real numbers 
£1, £2, • • • is equidistributed mod. 1. Such equidistribution can be 
formulated as a statement concerning the mean value of any Rie-
mann integrable function j(x) of period 1 for the argument values 
# — £i> £2, • • • ; and the gist of the method lies in the observation that 
verification of the statement for the special periodic functions e2vnix 

(n = 0, ± 1, ± 2 , • • • ) is sufficient. 

2. Limit circle and limit point. As one knows, Fourier series were 
generalized by Sturm and Liouville so as to cover the eigenvalues 
X and eigenf unctions cj>(s) of the self-ad joint differential equation 

(1) £x(«) - {js(p(s) j) ~ ?(')*(*)} + **(*) = °-

subject to a real linear boundary condition at either end of the in
terval O^s^L The coefficients p(s)>0 and q(s) are given real con
tinuous functions in this interval. Let the abbreviation <j>' be used for 
p(s)d<t>/ds. A real linear boundary condition for s = l is of the form 
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(2) <t>'(l) - h>4>(l) = 0 

with a real constant h (not excluding h~ *>). For a solution 0 of 
£x(0) = 0 and a solution 0* of L\,(0*) = 0 we have the simple Green's 
formula 

(3) [00* — 0*0']Q = (X ~ X*) I 00*<fo. 

I t shows that eigenfunctions 0, 0* belonging to two distinct eigen
values X, X* are necessarily orthogonal, ƒ000* - ^ = 0. On taking 
X* = X, 0* = 0 one finds that for a non-real X the function 0(s) cannot 
satisfy a real linear boundary condition at both ends without vanish
ing identically; for under these circumstances our equation would 
give f&fds = 0. The positive-definite character of the integrand 0$ 
is decisive here. 

The spectrum of the eigenvalues is discrete provided the dif
ferential equation is regular a t both ends, that is, provided p(s), 
q(s) are continuous and p(s) actually positive throughout the closed 
interval O^s^g/. If we make this assumption only for the right-open 
interval 0^s<l, as we shall now do, then the end s = 0 stays regular, 
but the end s = I is (possibly) singular. Let us throw the singular end 
into 5 = + oo. Under these circumstances one must expect that a 
continuous spectrum will appear side by side with the point spectrum. 
Moreover it seems that sometimes a boundary condition is required 
at the singular end, just as it would be for a regular one, but some
times not. 

The very first result by which I added my mite to our stock of 
mathematical knowledge had to do with the clarification of this issue 
[3], Since one cannot vouch that the spectrum will not cover the 
entire real X-axis, I had the simple idea (not as trivial at that time 
as it has now become) to determine Green's function G(s, t) neither 
for X = 0 nor for any real X, but for a X in the upper half-plane,5X>0, 
for example for X = i. Let rj(s)1 6(s) designate the two solutions 
0(5) =0(5 ; X) of (1) determined by the initial conditions 

,(0) = 1, 7/(0) = 0 and 0(0) = 0, 0'(O) = 1 

respectively, and then consider the solution 

(4) <t>(s) = W T K S ) -6(s) 

which combines them by means of an arbitrary constant w. The 
question naturally arises for which values of w this 0(s) satisfies a 
real linear boundary condition (2) at s — l. The answer is: for those w 
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that lie on a certain circle Ci in the complex w-plane. Indeed the con
dition (2) gives 

{wrf - 6') - h(w<n - 6) = 0 for s = I 

or 

d'(l) - hO(l) 
w = > 

i?'(0 - **(*) 

and this fractional linear or Möbius transformation h—>w maps the 
real fe-axis upon a circle in the w-plane. Here X is a given value in the 
upper half-plane. We now compare two such values X, Xo. Whereas 
<f)(s) =0(5 ; X), rj, 8, and so on refer to X, let 0o, rjo, 0o, and so on refer 
to Xo. By picking a point w° on Cf = C1ÇK0) one fixes the coefficient h 
of the real boundary condition (2). Clearly the point w = w(K) on 
Ci=Ci(X) for which (4) satisfies the same boundary condition as 
<j)o = w°'rjo — do a t s = Z proceeds from w° by a certain Möbius trans
formation w°—*w. Points w° and w on C? and Ci thus related may be 
called homologous points. 

We now face the task of transferring these obvious answers to the 
limit I—» 00. For that purpose the definitions of the circle Ci and of 
the homology between the two circles Cj(Xo) and CiÇK) must first be 
given a new form, one that looks more complicated but is in fact 
more instructive. Put X* = X, <£* = # in (3) : 

1 r l 

[<*><?'~fa>']0 = ( X - X ) - tâds. 
J 0 

On account of this identity the requirement that <j> satisfies a real 
linear boundary condition at 5 = /, <£<j5'--#0' = O for s = l, is equivalent 
to the relation 

3X I (t>$ds = 3w for $ = wri ~ 0. 
J 0 

This is indeed the equation of a circle Ci in the upper half w-plane. 
The points of the circular disk (Ci) bounded by C% are character
ized by the inequality 

/
<t>fds ^ 3w/3X. 

0 

This shows at once that Cv lies inside Ci if V>1. Hence with / tending 
to infinity, Ci shrinks either to a limit circle or a limit point C = C(X). 
This alternative, limit circle or limit point, is clearly the correct 
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formulation of the question whether or not to impose a boundary 
condition at s = <*>. 

Next we have to put the description of the homology mapping 
w°—>w of the circle Cf upon Ci into a form suitable for passage to the 
limit /—»oo. Pick a point w° on Cj°= Cj(X0) and form 

(5) <l>o(s) = <l>(s; Xo) = w»r)(s; X0) - 0($; X0). 

The solution 

(6) 0 ( J ) « 0(s; X) = wi |(5; X) - «(5; X), 

satisfying at the end s~l the same real linear boundary condition as 
<f>o(s)> is obtained from 0o(s) by solving the linear integral equation 

*oW = *(s) ~ (X - Xo) f G°(*, *)•*(*)<« 
•/ 0 

the kernel G°(s, J) of which is Green's function for Xo: 

From the solution <j>(s), (4), one gets w = w(K) as its initial value 0(0). 
This prescription at once carries over to the limit Z—» 00 ; one has 
simply to replace integration from 0 to / in our integral equation by 
one extending from 0 to 00. Of course in (5) the factor w° is now sup
posed to be a point on the circle C° (whether that is a real circle or 
degenerates into a point). Indeed, on trying to solve in the simplest 
way the integral equation thus resulting, namely by the Neumann 
series, one finds by direct estimates that the series converges within 
the circle around X0 in the X-plane that touches the real axis. Hence 
analytic continuation encounters no obstacle, and 0(0; X) =w(X) is a 
regular analytic function in the entire upper half X-plane. The method 
works in both the limit-circle and the limit-point cases. In the latter 
w° is the limit point for Xo, and the construction gives the limit point 
w = w(\) for X. Whether the singular end 5= 00 is of the limit circle or 
limit point type does not depend on the value of X as long as X is re
stricted to the upper half-plane. In the limit circle case it follows 
easily that the homology mapping w°—>w~wÇk) of C° onto C is a 
Möbius transformation with coefficients depending analytically on X 
(for 3X>0). 

If one replaces the differential equation (1) by the corresponding 
difference equation, one arrives at a neat formulation for the theory of 
Stieltjes' continued fractions and his moment problem. I t was treated 
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by E. Hellinger in a manner analogous to the one outlined here for 
the differential equation [4]. The moment problem is a very special 
limiting case of an interpolation problem in the theory of analytic 
functions w — w(X) of a complex variable X first studied by G. Pick 
and R. Nevanlinna [S]. I t concerns analytic functions w(K) defined 
in the upper half X-plane, 3X>0, the values of which have themselves 
positive imaginary parts. For the moment let us call them positive 
functions. How far is such a function determined if its values w(an) 
are prescribed for a sequence of points X = cei, a2, • • • in the upper 
half-plane? The differential problem corresponding to this interpola
tion or difference problem can be put in the form of a system of two 
linear differential equations of the first order for two unknowns 
0, <j>' containing the spectral parameter X in broken linear fashion, 

(Sx) 

I d<t> Xai(s) — h(s) 

ds \a(s) ~ b(s) 

d<j>' \a2(s) — 62W 

ds Xa(s) — b(s) 

with real coefficients which satisfy the inequalities 

k'(s) = ai(s)b(s) - bi(s)a(s) > 0, k(s) = a($)b2(s) - b(s)a2(s) > 0. 

This general system now replaces our former system (1) or 

(LX) -f = —•*'(*), -f- - (q(s) - X)•*(,). 
ds p(s) ds 

The theory of limit circles and of the homology mapping of the 
limit circles for different values of X carries over practically without 
alteration to this more general problem [ó]. The decisive point is the 
positive definite character of the integrand 

(Xa - b)(U - b) 

that appears in Green's formula and takes over the role played by 
<t>f in the problem (Lx). By direct constructive solutions of integral 
equations one thus proves the fundamental facts about the Nevan
linna interpolation problem, which Nevanlinna himself had derived 
with the aid of some of the strong "existential" methods character
istic for the theory of analytic functions, such as the Vitali theorem 
(B). 

3. Expansion theorem for ordinary self-adjoint linear differential 
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equations of second order with singular end. For the classical prob
lem (Lx) the investigation of the singular end 5 = 00 is merely a pre
liminary to the study of expansions by eigenfunctions. What one has 
to expect can be predicted when one first replaces the singular end 00 
by the regular end /. But one has to obliterate the feature of a dis
crete spectrum by writing the sum over the eigenvalues in the expan
sion formula as a Stieltjes integral involving a non-decreasing step 
function. Rather than at tempt to carry out the passage to the limit 
I—>oo one seeks to verify the formula thus obtained directly for the 
interval 0 ^ s< co with the singular end co. For simplicity's sake let us 
prescribe the boundary condition <£'(0)=0 at the regular end s = 0. 
Then we know a priori that for any eigenvalue X = Xn the function 
7](s) Xn) must be the eigenfunction. The eigenvalues are those real 
values of X for which rj(s; X) satisfies a given real linear boundary 
condition r)'(l) X) — h"rj(l;\) = Oat the end s = L 

Choose a definite Xo with positive imaginary part, for example 
Xo = i. Fixing the coefficient h amounts to fixing a definite point w° 
on the circle C*(Xo) = C°. The expansion of the arbitrary function f(s) 
is then given by 

/00 ~ X &n-ri(s;\n) where an = I y(s',\n)ri(\n)f(s)ds 
n J 0 

and 

r,(Xn) = l / ƒ (ri(s;\n))*ds. 

Let A = (Xi, X2) be any interval on the real X-axis, and, x(X) being any 
function of the real X, let Ax stand for the difference x(X2) —#(Xi). 
We may now define a nondecreasing step function pz(X) by the equa
tion 

(7) Apt - E n(\n). 
XnGA 

(If one of the ends Xi, X2 of the interval is an eigenvalue, the summand 
riÇKi) or r*(X2) in (7) should be counted with the weight 1/2 only.) 
After forming 

(8) A P ( J ) = f v(s;\)ipQi), Aa = f £P(s)-f(s)ds 
J A J 0 

our expansion appears as the following Stieltjes integral extending 
over the real X-axis: 
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(9) ƒ(*) ~ f n(s; \)da(\). 

One has good reason to hope that in this form the expansion theorem 
will carry over to the interval (0, «>) with the singular end QO, and 
in anticipation of this result we have dropped the subscript I in (8). 
The whole problem boils down to determining the nondecreasing 
function p(X). 

For a finite interval O^s^l and a non-real X one easily proves (C) 
the following expansion, which is uniformly convergent with respect 
to s: 

(10) 3*(*;X)= f a-— riK*;/*)<*pG0 
J _oo jU — A 

in particular (5 = 0) 

ƒ
+00 I 

3 dp(ji). 
-oo M — X 

We expect these equations to hold even for the infinite interval— 
although p(X) may then cease to be a step function—if w(K) and 
<j>(s; X) are constructed from a (or the) point w° on the limit circle C° 
according to the prescription given before. Denote by Ae the segment 
A after it has been raised by the positive amount e in the direction of 
the imaginary axis. One computes Ap and AP(S)=JATI(S; X)dp(X) 
from (11) and (10) as the limits 

(12) Ap = l im— f 5w(X)-<*X, 

AP($) = l im— f 30(s;X)-dX. 
€-*0 7T J Ae 

The first formula determines p. 
When turning these heuristic arguments into an actual proof one 

should first endeavor to prove the existence of the limit (12) and then 
to establish the expansion (9), (8), with the density differential dp 
thus constructed. Mean convergence of the expansion is to be ex
pected for any square integrable ƒ(s) ; certain slight restrictions im
posed upon f(s) will insure ordinary uniform convergence. 

Many authors have written on our subject. My own first approach 
was based on Hubert 's general theory of spectral decomposition of a 
bounded symmetric linear operator and specialized it by taking ad
vantage of the particular circumstances prevailing for the dif-
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ferential problem in question, above all, of the fact that for any 
eigenvalue X the eigenfunction, rj(s; X), is known a priori [7]. M. H. 
Stone's procedure in his book on Linear transformations in Hubert 
space [S] is of the same character, but he is able to utilize the ma
chinery of general concepts developed in the twenty intervening 
years for axiomatized Hubert space. Earlier, the Stieltjes method, on 
which Hellinger had founded Hubert 's general theory [9], had been 
directly applied to the special differential problem by E. Hilb [lO]; 
but he did not carry it so far as to obtain the explicit construction of 
the differential dp. Recently E. C. Titchmarsh in several papers and 
in his book on Eigenfunction expansions [ l l ] resumed this direct 
approach. The basic equation (12) is due to him. Yet his construc
tion of wÇK) and of dp is not as direct as I should wish them. Also a 
number of contributions made by A. Wintner and P. Hartman 
during the last two years ought to be mentioned [12]. The formula 
(12) was rediscovered by Kunihiko Kodaira (who of course had been 
cut off from our Western mathematical literature since the end of 
1941) ; his construction of p and his proofs for (12) and the expansion 
formula (9), still unpublished, seem to clinch the issue. It is remark
able that forty years had to pass before such a thoroughly satisfac
tory direct treatment emerged ; the fact is a reflection on the degree 
to which mathematicians during this period got absorbed in abstract 
generalizations and lost sight of their task of finishing up some of the 
more concrete problems of undeniable importance. 

4. Inequalities and asymptotic laws for eigenvalues. But let us 
drop this matter now and turn to another subject, that of the 
asymptotic distribution of the eigen-frequencies for the two- or more-
dimensional membrane and for other oscillating continua. H. A. 
Lorentz had impressed upon the mathematicians the urgency for 
physics of a settlement of this question. For a pupil of Hubert 
around 1910 it was natural to visualize the question as one concern
ing integral equations. By means of a real symmetric kernel K(sy t) 
one introduces the linear operator u-±Ku, more explicitly u{s) 
—^JQK(SJ t)u(t)dt, in the vector space of all real-valued continuous 
functions u~u(s) defined over the interval O ^ s g l . If the integral 
Jlu(s)v(s)ds is taken as the scalar product (w, v) of any two vectors 
u, v in this space, then the quadratic integral form 

K(u) = f j K(s,t)u(s)u(t)-dsdt 
Jo J o 

is the scalar product of u and Ku. The reciprocal eigenvalues K and 
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corresponding eigenvectors </> are the solutions of the equation K<f> 
= K<£. Let the positive K'S be arranged in descending order, K ià toè 
• • • , and the corresponding eigenfunctions </>«, so chosen as to form an 

orthonormal system, (</>m, </v)=ômn. Then Kn is the maximum of the 
form K under the auxiliary conditions 

||«||* - (si, u) S 1, («, *<) » 0 (i = 1, • - • , n - 1). 

Let coi(s), • • ' , o)n-i(s) be any n — 1 functions. The fundamental 
lemma which made my investigation possible states that there exists 
a vector u of length \\u\\ = 1 which is orthogonal to «i, • • • , con-i, 

(«, coi) = 0, • • • , (u, wn_i) = 0, 

such that K(u) è nn. This characterizes nn independently of the pre
ceding eigenvalues and eigenfunctions as the "minimum of a maxi
mum." The construction of such a u as the lemma requires is easy 
enough: a suitable linear combination Ci<j>i(s)+ • • • +cncf>n(s) of the 
first n eigenvectors will do the trick. I used this lemma (in a slightly 
different form) for the purpose of carrying over to all Kn statements 
that are evident for the first reciprocal eigenvalue K\ [13]. 

Here is an example. Suppose you add to a kernel K a positive-defi
nite one k, that is, one for which k(u)^0. I t is clear that the first 
reciprocal positive eigenvalue K* of K*~K+k is greater than or 
equal to K\\ for K\ is the maximum of K(u) and K* the maximum of 
K(u)+k(u) under the condition | |w | | 2 ^ l . Our lemma carries the 
inequality over to all K'S arranged in descending order: /cw^Kn*. 

This result is of immediate application to the two-dimensional 
membrane problem. Let the membrane cover a region S of (Jordan) 
area V. With the argument P ranging over the points of S the eigen
values X and eigenfunctions <j>{P) satisfy the differential equation 
A<£+X<£ = 0 in S and the condition </> = 0 along the boundary S' of S. 
The differential equation together with the boundary condition is 
equivalent to the integral equation 

* ( P ) - X f G(P,Q)-<KQ)-dQ = Q, 

the symmetric kernel of which is the Greene function G(P, Q). Di
vide 5 by a line / into two parts Si, S2 and let d , G2 be their Green's 
functions (setting G t(P, Q) = 0 if one of the argument points P , Q or 
both are outside Si). I t can easily be shown that the kernel 
G — (G1+G2) is positive-definite. Hence the nth eigenvalue \ n of G 
is less than or equal to the nth eigenvalue Xn' of Gi+G2. The eigen
values of G1+G2 are the eigenvalues of a membrane covering S which 
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is kept fixed not only along the boundary S', but also along the line I. 
By combining this result with the known asymptotic distribution of 
the membrane eigenvalues for a square it could readily be deduced 
that the fixing of the membrane along I does not alter the asymptotic 
distribution, 

Xn/Xn —> 1 for n~>oo, 

and moreover to establish the law of asymptotic distribution, accord
ing to which the number NÇK) of eigenvalues less than X equals 
asymptotically (F/47r)-X. 

After the first world war Courant resumed this sort of problems 
[14]. If I see correctly, his essential contribution is not the minimum-
maximum principle formulated in our fundamental lemma, but its 
application to a fairly general typical situation. The maximum of a 
quadratic form K(u) depending on a vector u of length not greater 
than 1 in a vector space § is lowered if additional restrictions are 
imposed upon u, for example, if u is restricted to a linear subspace 
§' of § . If the quadratic form is what Hubert calls completely con
tinuous, this obvious statement may be put into the inequality 
Ki ^/ci. The quadratic form K{u) in § ' is (u, Kfu) where Kf is the 
operator K followed by perpendicular projection upon ^p'. While Ki 
is the first reciprocal eigenvalue of the operator K in ^ , K{ has the 
same significance for the operator K' in § ' . The lemma carries the 
inequality K{ ^ K I over to all reciprocal (positive) eigenvalues, Kn' ^Kn. 
I t is clear that the fixing of a membrane along the line / introduces a 
new restriction, and hence Courant's observation at once gives rise 
to the inequality Xw^Xn ' , derived before in another way, for the 
eigenvalues Xw, Xn' of the undivided and divided membrane. Anyone 
familiar with the abstract concept of Hubert space who ponders a 
little more closely upon the situation to which the principle is applied 
here, will describe it as follows. All continuous functions u(P) in 
the closed region S with continuous first derivatives in the inte
rior, such that M = 0 at the boundary and the Dirichlet integral 
D(u)=fs(gra,d u)2dP is finite, form a functional space ^p. Define the 
square j|w||2 of the length of a vector u in this space by D(u), and not 
by I(u)=fsu2dP. The closure of § with respect to this metric is a 
Hilbert space § and I(u) is a completely continuous quadratic form 
in § . Without altering the other conditions for the functions w £ § 
add the restriction u = 0 along the line /. The closure of the subspace 
§ ' thus obtained is a closed subspace § ' of § , and the relation 

holds for the reciprocal eigenvalues of the form I(u) in § and 
in § ' respectively. (Forming the closure is essential since the eigen-
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functions of the divided membrane are in § ' but in general not in $ ' , 
because of the jump of their normal derivative along I. To be sure, 
by going back to the proof of the fundamental lemma, one can avoid 
this whole abstract set-up. But for the moment we are interested in 
the general formulation.) 

Let then K{u) again be a completely continuous quadratic form in a 
Hubert space @, and § be a closed subspace of ®. For simplicity's 
sake we assume K{u) to be positive-definite and denote the eigen
values of K{u) in © and in § by Xn and /xn respectively. We have seen 
that 

(13) Xn g Mn. 

Splitting © into ^ and its perpendicular subspace and choosing a basis 
pu p2> ' • ' f ° r the latter (preferably an orthonormal basis), we can 
pass from ^ to © by a sequence of intermediary subspaces § C ^ p ' 
C © " C • • • , ©(")—»© with *>—»oo,by adding one vector of this basis 
after the other, § (" ) = ^}+ {pu • • * > Pv}- Or we can submit the vec
tors u of © to one after the other of the conditions (w, pi) = 0, («, p*) 
= 0, • • • , and thus obtain a descending sequence © D ® 0 ® ' ' D • • * 
with ®(")—»^ for J>—»oo. If Xn is known, the inequality (13) gives a 
lower bound for fxny and the second of our sequences gives rise to an 
increasing sequence of such lower bounds, 

X« ^ Xn ^ Xn S ' * " , Hm Xn = Mn» 
p—><• 

If Un is known, the same inequality gives an upper bound for Xn, 
which by the first sequence of subspaces may be extended into a 
whole sequence of decreasing upper bounds, /XnàMn £=Mn" è • • • , 
lim^oo i$ =\n. With some right we may call the first procedure the 
Rayleigh-Ritz method and with more right ascribe the second to A. 
Weinstein [lS]. 

The basic situation encountered here is that of a Hilbert space § 
that splits into a subspace § ' and a perpendicular ^-dimensional 
space {pu • • • , pv] spanned by the vector basis pu • • • , pv. N. 
Aronszajn recently developed two neat formulas concerning this 
situation [16]. I shall here mention but the one that corresponds to 
the Weinstein process, the descent from § to § ' , and omit the other 
which refers to the inverse Rayleigh-Ritz process. Let R(Ç) be the 
resolvent of the operator K in § , so that u~R(Ç)v is the solution of 
the equation u — f -Ku~v. Moreover let X', uf be an eigenvalue and 
corresponding eigenvector of K' in § ' . This fact is expressed by the 
relations 
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u' G $ ' , u' - \'Ku' = fax + • • • + ft*,. 

If we suppose that X' coincides with no eigenvalue Xn of K then the 
constants /3» cannot all be zero. By means of the resolvent 22(f) the 
second relation takes on the form u'—^j^iPj-RÇk^pj. The first 
relation requires that the vector uf is perpendicular to all the pi, 

T,Pi(p<9R(\')Pi)~0 ( * W = 1, • • ' , " ) . 
i 

These v equations for the v unknowns (Jj have a nontrivial solution 
only if the determinant 

det (pi9 RQ:)pi) = WP(Ç) 

vanishes for f=X ' . Divide WP(Ç) by Gram's determinant Gp 

= det (pit pj). The quotient 

is clearly independent of the choice of the basis pi, • • • , pv. From the 
theory of the resolvent one knows that W(£) is a meromorphic func
tion with simple poles at the eigenvalues Xn of K. On the other hand, 
we have seen that W(Ç) vanishes for a value f = X ' different from all 
the Xn if and only if X' is an eigenvalue of K' in $£>'. Hence we shall 
not find the following equation of Aronszajn too surprising: 

I regret that shortness of time prevents me from illustrating these 
general developments by their applications to the classical problems 
of elastic and electromagnetic oscillations (D). 

5. Zeta-function of the membrane and asymptotic laws for its 
eigenf unctions. The physicist will not be satisfied with a knowledge 
of the asymptotic behavior of the eigenvalues alone; also that of the 
eigenfunctions should be investigated. Carleman was the first to at
tack this more difficult problem by a new powerful method [17]. 
Last year we had the good fortune to have with us at the Institute 
Dr. Âke Pleijel, who had extended Carleman's investigations [18], 
and Dr. Minakshisundaram, who independently of Carleman had 
just found a modification of Carleman's method shedding new light 
on the whole problem. Let us again envisage the two-dimensional 
membrane. Carleman made use of the Green's function of the 
"meson" equation Au — k2u~0 with the positive parameter k2 (for 
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the boundary condition w = 0). Minakshisundaram [19] used instead 
Green's function G{P, Q; t) of the heat equation 

(14) au - du/Bt = 0 

with the positive time parameter L 

u(P;t)= f G(P,Q;t)f(Q)-dQ 
J s 

is the temperature of the disk 5 at the point P and at the moment t 
if f(P) describes the initial distribution of temperature and the 
boundary of S is kept constantly on the temperature zero. For the 
infinite plane G(P, Q; t) is 

< W - e i O - ^ - p ( - = ! ) 

where TPQ denotes the distance of the two points P , Q. For an arbi
trary domain S we write 

G(P,Q;t) = G o ( P , Q ; 0 -g(P,Q;t). 

For a fixed P in the interior of 5 , the compensating term g(P, Q\ t) is a 
solution of (14) which vanishes for t—»0 and on the surface Sf of S 
has the same boundary values as the principal part Go. 

The maximum which the principal term Go assumes when P and / 
are given, but Q varies over the boundary S', is 

h denoting the shortest distance of P from the boundary. As a func
tion of / this Ho is on the increase from / = 0 to / = T = 4/lp and then 
decreases. A simple argument shows that, as long as 0<tl&T, the 
compensating function g(P, Q; t) of Q is positive and reaches its 
maximum at the boundary, or 
(15) 0<g(P,Q;t) g H0(P;t) 

for all Q in 5 and 0<t£T. 
In terms of the orthonormal system of eigenfunctions </>n(P) and 

their eigenvalues Xn Green's function is expressible as the sum 

(16) Z e-^n(P)*n(Ö) . 
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The series 

*.CP)*,(6) 
(17) Ç(P, Q;s) « E 

M 
may be called the f-function and accordingly (16) the ô-function of 
the membrane problem. We know that (17) converges uniformly in 
P and Q for all complex s the real part cr of which is greater than or 
equal to 2. For 5 = 1, 2, 3, • • • the f-function gives Green's function 
G(P, Ç) of the membrane and its successive iterations. 

One of Riemann's methods for deriving the properties of the 
ordinary f-function was based on a connection between the 0-function 
and the f-function, which at once carries over to the general functions 
here considered as follows : 

(18) r ( s ) . f ( P f Ç ; * ) « p G C P . Q ; * ) - * - 1 -
•/ o 

it. 

On the basis of this relation Minakshisundaram proves that T(s) 
•J"(P, Q\ s) is a regular function of 5 in the entire s-plane if P , Q are 
two distinct inner points of 5, but that it is regular except for a 
simple pole at 5 = 1 with residue 1/47T if Q and P coincide. Still fol
lowing Riemann, Minakshisundaram splits the integral Jo on the 
right of (18) into JQ+JT- Because of the uniform convergence of 
£*(P, Q; 2), the 0-function (16) falls off exponentially with t—»<*>, 
and hence the integral 

is a regular-analytic function of 5 in the whole 5-plane. If PT^Q the 
formula 

<W <*<>-£.»(-£)-!<*. 0:0 
together with the estimate (IS) proves that G(P, Q; t) also goes down 
exponentially to zero with 1//—»oo, and hence the integral f0 is 
likewise regular-analytic in s. This proves the result for P^Q. 
However if Q=*P then 

G ( P , P ; * ) = » — - - g ( P , P ; 0 . 
47T/ 

The second part is positive and does not exceed i îo(P; t)\ therefore 
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/ Jg (P , P ; t) -V-Ht is regular in s, however 

rT 1 1 I1 ' -1 

I t*-Ht~ 
J 0 47r/ 4 X 5 - 1 

has a pole a t 5 = 1 with the residue 1/47T. That completes the proof. 
f (P, Q; s) itself has zeros for the same values for which the regular 
function 1/T(s) has zeros, namely for s = 0, — 1 , — 2, • • 

Integration over P , one might think, would give for 

f (s) = f t(P9P;s)-dP- E C 
J S n 

the following result 

V 1 
(19) T(s) f (5) = h a regular function R(s). 

47T 5 ~ 1 

Unfortunately this conclusion is too hasty: if P is near the boundary, 
Ho(P; t) is not so small. By carrying out the integration over P in the 
relation 

G(P, P ; 0 = g(P, P ; 0, 0 ^ g(P, P ; 0 g #o(P; 0, 

one finds that the remainder R(s) in (19) is regular at least for a > 1/2 ; 
it seems difficult to go beyond the vertical <r = 1/2. 

Standard devices familiar from the theory of Riemann's f-function 
permit one to deduce from this behavior of the f-function of the 
membrane Carleman's asymptotic formulas 

E (0n(P))2~X/47T, N{\) = E 1 — FX/47T 
xn^x xn^x 

and also the "incoherence relation" 

E 4>n{P)<t>n{Q) - o(A) for P ^ 0. 
Xn^X 

I feel tha t these informations about the proper oscillations of a 
membrane, valuable as they are, are still very incomplete. I have cer
tain conjectures on what a complete analysis of their asymptotic be
havior should aim at ; but since for more than 35 years I have made 
no serious at tempt to prove them, I think I had better keep them to 
myself. 

In general, it can not be expected that our f-function satisfies a 
functional equation of the Riemann type; one may guess that this 



132 HERMANN WEYL [March 

feature depends on the homogeneity of the domain of integration. 
Such a domain is the circumference of the unit circle. Functions on 
it are functions ƒ(x) of period 2w. The periodic eigenfunctions <j> and 
corresponding eigenvalues X of d2<f>/dx2+\<j> = 0 are 

<t>(x) = einx, An = n2 (n = 0, ± 1 , ± 2 , • • • ). 

This leads straight to the Riemann f-function X)n=i^~2* usually de
noted not by f (s) but by f (25). I t was therefore natural that Minak-
shisundaram should investigate the spherical harmonics on a fe-di-
mensional sphere (in è + 1-dimensional space). Here he found indeed 
a sort of Riemann functional equation, the structure of which is, how
ever, essentially more complicated than in the classical Riemann 
case k = 1. 

The two-sphere is homogeneous because it permits a compact 
transitive Lie-group a of transformations s into itself, namely the 
group of rotations. The spherical harmonics of order / form a (2Z+1)-
dimensional linear manifold that is invariant with respect to the 
group of rotations and has the property of irreducibility in this regard. 
Consider arbitrary (complex-valued) continuous functions on the 
sphere and define the scalar product of two such functions ƒ and g 
by the integral fg(P)f(P) -dœp formed by means of the invariant 
area element dcop. It is obvious how to generalize this situation to any 
homogeneous manifold S of points P , that is, any manifold that per
mits a compact transitive Lie-group a of transformations s, P—*sP. 
The existence of an invariant volume element on such a manifold 
(which itself is of necessity compact) follows easily from the fact tha t 
a compact Lie-group has an invariant volume element ds. We 
normalize the unit for measuring volumes on the group so that the 
total volume Jds of the group becomes 1. The integrals with respect to 
5 are then in truth mean values. The transform sf of a function ƒ ==ƒ (P) 
on S is defined by sf(sP) = / (P ) or sf(P) =/(5~1P), A set ^ ( P ) , 
<j>h(P) of functions on 5, or the manifold of their linear combinations 
0(P)=Xi-</>i(P)+ • • • +Xh-<t>h(P), is invariant if each s</>i(P) is a 
linear combination ^jO)ji(s)-<t>i(P) of the </>*• themselves. Then 
s—>||co^Cs)|| is a representation of degree h of the group a. Inequiva-
lent irreducible invariant sets are orthogonal to each other. Besides 
orthogonality there is the completeness relation, to which we shall 
presently return. Thus we are in possession of the "eigenfunctions" 
of the homogeneous manifold, the sequence of which is subdivided 
into irreducible invariant sets of finite length. Theorems about sum-
mability of expansions in terms of these eigenfunctions have been 
proved by S. Bochner [20 ]. But so far they are eigenfunctions with-
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out eigenvalues. I t was the young Dutch physicist H. B. G. Casimir 
who, prompted by the applications of group theory to quantum 
mechanics, found the eigenvalues. Indeed he constructed an in
variant self-adjoint differential operator A working on arbitrary func
tions ƒ (P) which is the analogue of the Laplace operator on a sphere, 
and he was able to show that the functions of a given irreducible in
variant set satisfy an equation A<£+X<£ = 0 with a constant X char
acteristic for the entire set [21 ]. Having the eigenfunctions, one can, 
following a suggestion by Bochner, form the J*-function 

«,.„„)_ 2 * ^ 
n An 

and might expect that this function, in addition to having the prop
erties quite generally established by Minakshisundaram, will satisfy 
a functional equation of Riemann's type. But this is a question that 
remains to be investigated. 

6. Integral equations and the group-theoretic completeness rela
tion. The proof of the completeness relation for invariant sets on a 
homogeneous manifold S is one of the most surprising applications 
of the eigenvalue theory of integral equations. If the manifold 5 is the 
compact Lie group itself under the influence of its left translations, 
then this theorem states the completeness of the totality of all ir
reducible representations of the group. But the method for its proof, 
developed in 1927 by F. Peter and the speaker [22], not only carries 
over to the homogeneous manifolds, but applies to a far more general 
situation, that is best described in axiomatic terms [23]. We replace 
the functions on the homogeneous manifold by vectors ƒ in a vector 
space 2 and suppose that 2 bears a Hermitian metric defined by a 
scalar product (g, ƒ) with the usual properties including the positive 
character of (ƒ, ƒ) == ||/||2. An abstract compact Lie group a is given and 
a representation of its elements 5 by linear transformations ƒ—>sf in 
our vector space. The invariance of the metric is assumed, (sg, sf) 
= (g, ƒ). Let ƒ be a given vector. All vectors that will occur in our con
struction are prepared from ƒ by forming linear combinations of its 
transforms sf. Besides 2 we envisage the "vector space" S of all con
tinuous functions £ = £(s) on the group manifold cr and define a linear 
mapping £—>g of H onto 2 by 

g - ra - ƒ « ( » ) •*/•*. 
and its Hermitian conjugate, a mapping g-»£ of 2 onto E, by 
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The mapping f*f = § of S into itself has the positive-definite 
Hermitian kernel H(s> t) = (sf, tf). By Erhard Schmidt's method we 
construct its largest reciprocal eigenvalue y and an orthonormal set 
of eigenfunctions <t>i(s), • • • , <l>h(s) for it. Repetition of the construc
tion gives the reciprocal eigenvalues in descending order, y > yf > • • •, 
and the sought-for completeness relation results from the well known 
fact that the trace of H equals the sum of the reciprocal eigenvalues, 

ILfll2 =(ƒ,ƒ) = hy+h'y'+--- . 

Indeed jH(s, t)-(j)i(t)'dt — y-<l)i may be written in the form 

fa, = y/*.£,, f*̂  = 7 1 / 2 ' ^ 

where the first equation is to be taken as the definition of the vector 
gi. The gi then form an orthonormal invariant set, and if the Fourier 
coefficients (gi,f)=ai are introduced one finds that 

hy = | « i | 2 + • • • + | <*h\2. 

Thus the completeness relation follows, stating that the orthonormal 
sequence gi, gi, • • • , (gm, gn) = Smnt resulting from our construction 
and consisting of sections of finite length, each of which is an invariant 
set, makes the absolute square sum | cti | 2 +1 ce21

2 + • • • of the Fourier 
coefficients ai~(gi, ƒ) not only ^ | | / | | 2 , as is trivial (Bessel's in
equality), but actually =| | / | |2 . The construction picks out those in
variant sets that contribute to ƒ and ||/ | |2. 

This feature is quite essential when, with Harald Bohr and J. von 
Neumann [24], all restrictions concerning the group a are abandoned. 
The construction still works, provided one supposes ƒ to be "almost 
periodic." But in general there are under these circumstances more 
than denumerably many inequivalent irreducible invariant sets of 
vectors; but ƒ itself picks out those among them that matter for/.— 
The assumption of almost periodicity is highly restrictive. One may 
instead impose some slight restriction on the group, e.g., local com
pactness, and at the same time admit a far wider class of vectors 
ƒ. In that case nothing resembling completeness is to be expected un
less one includes also representations of infinite degree. This step has 
recently been taken by D. Rykov and I. Gelfand in Russia, by V. 
Bargmann and I. Segal in this country [25]. 

I think it is time for me to stop here. I have not even touched on 
the extension of Hubert 's theory of bounded to non-bounded linear 
operators, which came about under the pressure of quantum me-
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chanics, nor to the connection between spectral decomposition and 
ergodic theory. Other mathematicians at other times have spoken or 
will speak on these subjects with more competence than I could. I 
hope you have taken this lecture for what it was meant to be: a 
Plaudereiy the chat of a man who has reached the age where it is 
more pleasant to remember the past than to look forward into the 
future. Even so, it gives him a little satisfaction to see that the issues 
to which the efforts of his youth were dedicated have kept alive over 
the years and are still in the process of unfolding their implications. 

NOTES 

(A) There are two classes of eigenfunctions. But since one of them 
does not contribute to the expansion of the discontinuous function 
1°(#), only the eigenvalues X2 belonging to the other class have to be 
taken into account; they are determined by the transcendental equa
tion 

aXfl- jSXx 
ft tan h a- tan = 0. 

2 2 
I t is easily seen that for every integer n this equation has exactly one 
root Xn of the form X„ = 2w+0n, — l < 0 n < l . If a and j8 are rational, 

a = a/cy /3 = b/c, a + b = c; a, b, c integers, c > 0, 

then dn has the period c, 0n+c = 0n, and this circumstance makes a 
fairly explicit evaluation of the nth partial sum lj(x) possible. 

(B) The main fact is as follows: The given values ft = w((2i), 
j82 = w>(û!2), • • • have to satisfy a sequence of inequalities of which the 
first, 3ft > 0 , involves only ft, the second ft and ft, and so on. If these 
inequalities are fulfilled then there are two possibilities, which are 
distinguishable by a convergence criterion. In the first, the limit point 
case, the problem has a unique solution; in the second, the limit circle 
case, the manifold of all solutions w(K) is obtained from that of all 
positive functions zÇK) by a certain Möbius transformation 

A(k).z(k) + B(\) 
W(A) = 

C(X).*(X)+0(X) 
with coefficients A, B, C, D that are regular analytic functions of X 
in the upper half X-plane. 

(C) Indeed replacing Xo, X by X, X in (6) one finds 

30W = 3X- f G(s,t)-$(t)-dt, 
Jo 
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and therefore 30(5) has a uniformly convergent .expansion in terms 
of the eigenfunctions rj(s; Xn). For the integral fl

0(f>(s)rj(s; Xn) -ds one 
obtains from (3) the value l/(Xn—X). 

(D) The eigenvalues X = /z« of Au+\u~0 corresponding to the 
boundary condition du/dn — 0 (normal derivative of u equal to 
zero; "acoustic eigenvalues") are the reciprocals of the successive 
maxima of I(u) under the restriction £>(#) = 1, or the successive 
minima of D{u) under the restriction J(w) = l. The boundary condi
tion du/dn — 0 gets lost, as it were, in the process of closure under 
the metric defined by D(u). Hence ju»âX„, where Xn, as before, are 
the membrane eigenvalues corresponding to the boundary condition 
w = 0. 

The equation for the oscillations of a plate, 

AAu-\2u~0 in 5, 

arises from minimizing 

(20) f (Auy-dP 
J 8 

under the auxiliary condition 7(w) = l. Let /4 be the eigenvalues of 
the clamped plate, 

du 
boundary conditions u = 0, — = 0, 

dn 

and X̂  those for the "half-free" plate, 

(21) boundary conditions u = 0, Aw = 0. 

Again the boundary condition Au = 0 gets lost in the process of closure 
under the metric defined by (20). Hence X^^/4; one can further 
expect that Xn and /xn follow the same asymptotic law. Weinstein 
observed that the eigenvalues of the half-free plate (as their notation 
indicates) are simply the squares of the membrane eigenvalues. In
deed if AAu = \2u (X>0) set Aw=-Xfl, so that Az;+Xw = 0. The 
boundary conditions (21) give w = 0, v~Q along S', hence (u+v)/2 
is a membrane eigenf unction with the eigenvalue X and (u—v)/2 
for —X. But the membrane has no negative eigenvalues; conse
quently u — v = 0 and (u+v)/2~u. 

It was by a somewhat similar remark that I had previously reduced 
the elastic oscillations of a three-dimensional body asymptotically 
to the three-dimensional membrane problem [26]. The vector field 
b(P) describing a proper oscillation of the elastic body satisfies an 
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equation 

(E) a-grad div b - 6-rot rot fc + Xö = 0 in 5 

with two elastic constants ay b. Impose the boundary conditions 

(E') b normal, div b = 0 on the surface S' of S. 

For <£ = div b one finds # A 0 + X 0 = O in S and the boundary condition 
<f> = 0 ; hence if 0 is an eigenf unction of the membrane problem with 
the eigenvalue X/a then b —grad <t> satisfies (E), (E')- If, however, 
div b = 0 throughout 5 we have 

b-Ab + Xb = 0, div b * 0 in 5 ; b normal on S' 

(since Ab = grad div b —rot rot b), or \/b is an eigenvalue of the prob
lem of radiation in a Hohlraum S whose wall S ' is a perfect mirror. 
Denoting the numbers of eigenvalues âX of the membrane, the radia
tion, and the elastic problem (E) & (E') by NmÇk), Nr(K) and Ne(a,b;\) 
respectively, we thus find the relation 

N.(o, b; X) == Nm(\/a) + Nr(\/b). 

For a = ô = l the left side of (E) turns into Ab+Xb. Since asymp
totically the boundary conditions are of no influence we must have 
the asymptotic relation 

tf.(l, 1 ; X) — 3Nm(\), that is, Nm(\) + Nf(\) ~ 3Nm(\) 

or Nr(\)~2Nm(k) and thus 

Nt{o, b; X) ~ Nm(\/a) + 2Nm(\/b). 
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