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author cites as a noteworthy phenomenon an example of a continu
ous game where every pure strategy is employed in the optimum 
strategy. Such examples are commonplace in the statistical litera
ture; several interesting ones (designed for another purpose) are to be 
found in Ann. Math. Statist. (1950) p. 190. Other citable results are 
those on the equivalence of behavior strategies and mixed strategies 
under general conditions (Ann. of Math. (1951) p. 581), and non-
trivial results on the elimination of randomization (Ann. Math. Sta
tist. (1951) p. 1 and p. 112). 

The above criticisms should be regarded as directed at minor 
blemishes of a highly meritorious piece of work. The mathematical 
public is indebted to the author for an excellent and highly readable 
book, which this reviewer read with pleasure. 

J. WOLFOWITZ 

Leçons d'analyse f unctionelle. By F. Riesz and B. Sz.-Nagy. Budapest, 
Akadémiai Kiadó. 8+448 pp. About $7.50. 

This work is superb. 
For the field which it covers, it cannot be approached now nor will 

be soon by other books. It is not presented as a treatise for spe
cialists, the essential purpose of which is to report advanced and 
complex results. Nor is it written as a textbook for the young stu
dent. Its aims are much higher and much more elegant. And in 
accomplishing these aims its authors have put together a magnificent 
advanced treatise and a most excellent though not elementary text. 
The purpose of the work is to set down, within the spirit and con
text of the undertaking, a certain coherent and central portion of 
mathematics in final and definite form. And within the spirit of the 
undertaking, this version is final and correct. Whether it is the only 
possible such version is another question, the answer to which is not 
important at this point. The hallmark of the work is its balance and 
good taste: in the choice of subjects, in the extent and detail in which 
they are developed, in the methods used to present them, and in the 
critical question of style and exposition. 

The subjects treated are the modern theory of integration and 
differentiation, and the theory of linear operators which is based 
upon these concepts. Thus we find discussion of the space L2 of square 
integrable functions, of abstract Hilbert space, of the space C of 
continuous functions. The latter is connected to integration theory 
by the fundamental correspondence between linear functionals and 
measures. This leads to a brief treatment of the spaces Lp, p^lf of 
reflexive spaces, and finally, of Banach spaces. For these various 
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spaces, the operator theory discussed includes integral operators, 
completely continuous operators in general, completely continuous 
symmetric (that is, self-adjoint) operators, bounded symmetric 
operators, unbounded self-adjoint operators, and spectral theory in 
general Banach spaces. 

The method of presentation is a mixture of the inductive and the 
axiomatic. Thus integration is first developed for the line, then in 
w-space, and finally abstract integrals and measures are treated. 
Similarly, in the realm of normed spaces, there is first a thorough 
treatment of L2, then the Hubert space is axiomatized. After discus
sion of L2, Z>, p^ly and C, a general Banach space is introduced. 
The first operators handled are integral operators. From there one 
generalizes to the completely continuous ones. For the symmetric 
case there is the succession of stages of generalization mentioned in 
the preceding paragraph. This method has a multitude of advantages. 
The historical development of a subject is always humanistically 
rich. I t so happens that in this field, a historical development written 
in full knowledge of what we now understand is thoroughly satis
factory. This is not to say that the authors insist uniformly on the 
time-sequence procedure. For instance, at the very beginning, the 
order of discussion is: differentiation, integration, and measure,—a 
precise about-face of the traditional sequence. The inductive de
velopment has disadvantages which will sometimes discourage the 
younger student. Thus after he has labored assiduously studying 
completely continuous operators in L2, finally establishing the validity 
of Fredholm's alternative, he is told in one page how to change all 
the arguments so far presented to apply to a general Banach space. 
This amounts to receiving a commission to rewrite ten pages of the 
book to suit the new exigencies. I t is doubtful whether these instruc
tions will convince the reader who meets this situation for the first 
time. 

The book is in two parts. The first one on modern variables covers 
approximately one third of the work. We are told that this section 
was written by F. Riesz and that Part II on integral equations and 
linear operators was essentially set down by B. Sz.-Nagy. The ap
pearance finally of Riesz' treatment of real variables is a long awaited 
event which we all greet with joy. The reviewer has heard many 
stories of earlier manuscripts which were all ready twenty and more 
years ago but which due to an exceptional (and exasperating) desire 
for perfection never reached the printer. A recent inspection of a 
note-book that this writer kept of daily conversations with F. R. 
reveals that the treatment of real variables discussed a generation ago 
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is precisely the one now before us. Here it is in the exceptional 
style and the warm and particularly personal French of its sponsor. 
The presentation of the entire theory in 140 pages is a remarkable 
tour de force both of mathematical profundity and of stylistic power. 
Part II was written by Nagy although it is very heavily influenced 
by Riesz. The presentation of the junior member of this partnership 
is of the finest. A more capable and polished writer could scarcely be 
found. We find in him the same infinite care for smooth and natural 
development which characterize his teacher. If a difference is to be 
pointed out, it would be that Nagy is less likely to "épater" the 
reader with a mild looking but in truth devastating lemma than his 
kindly malicious preceptor. 

Before discussing the substance of the work, a few more general 
remarks may be made. The mechanics of subdivision within chapters 
is reduced to a minimum—theorem 3.1.7.12 is nowhere to be found. 
Instead we have Lebesgue's theorem or Fubini's or Beppo Levi's, etc. 
This is very satisfactory to the reader, although as a device, it is 
frequently employed (by other authors) to torture the facts. There is 
a most useful bibliography citing the works of about one hundred and 
fifty authors. The errata are infrequent and will cause no difficulty to 
the reader. Some of these are listed on the last page. The typography 
is most agreeable. I t is a pleasure to be able to report that it is 
possible to import the book into this country. Some thirty copies 
were obtained after a delay of three months for a class in integration 
now being given by this writer. 

Part I treats in that order: differentiation, integration, measure; 
the space L2; and the Lebesgue-Stieltjes integral. It begins with a 
three page proof of Lebesgue's theorem on the differentiability al
most everywhere (a.e.) of a monotone function. Then comes Fubini's 
important theorem on the termwise differentiability of a series whose 
terms are monotone functions of the same type. This theorem yields 
numerous applications. Next is a section on functions of intervals, 
their integrals and derivatives. After two brief fundamental theorems 
for these, it is easy to establish tha t : a bounded function f(x) is 
Riemann integrable if and only if it is continuous a.e. 

The integral is next defined. First for the class Co of step functions 
in an obvious way. Then for the limits of increasing sequences of 
step functions whose integrals are bounded—this gives class Ci. 
Class C2 is the set of all functions ƒ(x) — g(x) where/(x) , g(x)Ç.C\. 
This is a very characteristic device with a large number of possible 
variations and applications. The point of this development is that it 
incorporates into a definition one of the most important properties 
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of the integral: The integral of a limit is the limit of the integrals. 
Next comes the theorem (Beppo Levi) that class Cz (limits of in
creasing functions in C2 whose integrals are bounded) is identical 
with C2- Essentially of the same character are the classic theorem of 
Lebesgue and a lemma of Fatou. This completes the development of 
the integral (in ten pages). I t is now possible to develop the in
equalities of Schwarz, Holder and Minkowski fundamental to the 
study of L2 and Lp. Finally measurable functions are denned and 
then measurable sets. A measurable function is one which is the limit 
a.e. of a sequence of integrable functions. A measurable set is one 
such that its characteristic function is measurable. The properties of 
measurability are dealt with in two pages. 

Now comes the study of indefinite integrals and their derivatives. 
With the help of Fubini's theorem (above) it is trivial to prove that 
every integrable function is the derivative a.e. of its indefinite 
integral. Using the concept of absolute continuity, the characteriza
tion of all indefinite integrals is then taken up. 

There is now a section on the space L2. The well known method of 
Riesz is applied to the proof of the Riesz-Fisher theorem. Linear 
functionals and orthonormal systemsare studied. The notions of strong 
and weak convergence are introduced. In germ form one finds here a 
multitude of phenomena and theorems which will subsequently be 
reproduced in Banach spaces (for example: The sequence \An} of 
linear functionals in L2 cannot converge for every f(x) £ L 2 without 
being uniformly bounded). 

Functions of several variables may be treated by an obvious gen
eralization or by the following mapping procedure. Suppose that we 
consider two variables. In the theory of integration for the line it is 
sufficient to consider step functions which are constant on intervals 
of the form mZ~nSocè.{mJrV)S~n\ similarly for squares. Now one 
may establish a 1-1 correspondence between the 32 n squares each of 
area 3~~2n of the unit square and the 32n intervals each of length 3~~2n 

of the unit interval. This correspondence may be established for 
each n in the customary way so as to "preserve inclusion." This 
process now yields a 1-1 correspondence between step functions in 
two dimensions defined over the planar grid and those in one dimen
sion defined over the linear grid. This correspondence preserves 
integrals. I t may be extended to limits of increasing sequences of 
step functions. With the help of this correspondence many problems 
in n dimensions are directly referable to the appropriate theorem 
in one dimension. Fubini's theorem on the reduction of a double to 
an iterated integral presents new phenomena. It is handled by noting 
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the fact that it is trivial for step functions, then by appropriate 
passage to the limit. 

Other definitions of the Lebesgue integral are considered. This leads 
to the proof of the theorems of Egoroff and Lusin. 

The final chapter of Part I considers the Lebesgue-Stieltjes integral. 
First is proved the theorem of Riesz (so fundamental to all modern 
thinking on abstract integration) to the effect that every bounded 
linear functional on the space C of functions continuous on a^x^b 
is of the form f%f(x)da(x) where a(x) is of bounded variation:—and 
conversely. This is done by extending the functionals from C to a 
larger class by precisely the same method used in extending the 
Lebesgue integral from the class Co of step functions to the classes 
G and G (see above). Questions of the uniqueness of a(x) and con
cerned with the convergence of functionals are considered. The 
Lebesgue-Stieltjes integral is sketched briefly from many points of 
view. Part I closes with a development of the Daniell integral. This 
is a linear functional defined by extension from a class Co of functions 
<j>(x) defined on an abstract set. The important properties of C0 are 
that it be an ordered linear space which is also a lattice (in other 
words, using the terminology of Bourbaki in his recent book on 
measure: Co est un espace de Riesz). The treatment of this integral 
throws penetrating light on the Lebesgue and the class of Lebesgue-
Stieltjes integrals. 

Part II considers first integral equations. This introduces all the 
phenomena subsequently needed in the study of general linear 
operators: boundedness, weak, strong, uniform convergence, and 
the elementary algebraic structure of the ring of operators including 
inversion and commutativity. If the kernel K{x, y) belongs to L2 

on the square a Sx, y^b> and gives rise to the operator K on the 
space L2 of all functions h{x), a^x^b: Kh{x)—flK(x, y)h(y)dy} 

then a study is made of the relation between the element K(x, y) £ L 2 

and the operator K over L2. A kernel of the form ]Qf <t>i(x)&i(y) 
is said to be of finite rank. Any kernel K(x, y) may obviously be ap
proximated in the norm of L2 by kernels of finite rank. Also, the 
mapping from kernels into transformations is an isomorphism (into). 

Next we find a very thorough discussion of the Fredholm theory. 
Three methods are given. The first method considers to begin with 
kernels of finite rank. For these the complete theory is essentially a 
branch of elementary algebra. To proceed to the general case, it is 
shown that an arbitrary kernel K(x, 3/) may be written in the form 
K(x, y) — L(x, 3/) + [K(x, y) — L(x, y)] where L(x> y) is of finite rank 
and the second term H(x, y) is sufficiently small so that (I — H)~l 
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exists. This method is due to E. Schmidt. The second method is the 
classic one of Fredholm and is sketched rather briefly. 

The third method, due to Riesz, is of a geometric nature and ap
plies to any completely continuous operator K. Let T — I—K. Let 
Tin be the closed linear manifold of elements ƒ for which Tnf = 0. Then 
(0) =9W0^3)Ji^3K2^ • • • . I t is shown that there is a first index v 
after which equality holds at each step: %Jlv = ffî;v+i = • • • . Now let 
SSln be the range of Tn. Then it may be shown that 5ftn is closed. 
Clearly L2 = SftoiS^i^Sfe^ • • • . I t may be shown that there is a 
first index /x after which equality holds a t each step : 9Î^ = 9tM+i = • • •. 
Finally v—\x. In the case V=JJL = 0, T has a bounded inverse. If 
v>0, $Jlv+yiv — L2 the sum being disjoint, and the pair (SD?V, 9t„) re
duces T and hence K. From here to the proof of the Fredholm alterna
tive is a brief step. This Fredholm theory is applied to the solution of 
Dirichlet and Neumann problems for smooth curves. 

The following chapter (V) is devoted to the introduction of ab
stract Hubert and Banach spaces. There is the obvious development 
on linear functionals, adjoint spaces, reflexive spaces, adjoint oper
ators, bases, biorthogonal systems. There is also an interesting sec
tion on the form of completely continuous linear transformations in 
the space C of continuous functions. 

The next four chapters are devoted to an exposition of the facts 
that are associated with symmetric transformations in Hubert space. 
Chapter VI treats the completely continuous symmetric transforma
tion. I t is shown that if A is such a transformation and if {fn} is a 
sequence such that | | / n | | = l and ||i4/w|| —*\\A\\ (the norm of A) then 
there exist solutions to the equation A4> =Mi0 where | /zi| = ||-4||. Once 
such a c/> has been found, the process of determining the structure of 
A is based on the application of the same procedure to the subspace of 
the Hilbert space § orthogonal to <j>. Thus one obtains the sequence 
of characteristic values /xi, ju2, • • • with |jui| ^ |/x2| ^ • • • and the 
associated characteristic elements <£i, $2, • • * which form an ortho-
normal set. There is also a discussion of the direct determination of 
the nth characteristic value of A and of the relation existing between 
the characteristic values of Ai, A2 and A =-41+^2. These results are 
due to Hilbert, Courant, and Weyl. The Hilbert-Schmidt theory of 
symmetric kernels is treated. (It should be pointed out that a good 
part of the discussion on completely continuous operators deals with 
incomplete Hilbert spaces.) It is then applied to two interesting prob
lems. The first one concerns the vibrating string in a formulation 
given to it recently by Nagy. The second one gives a proof due to 
Weyl and Rellich of the fundamental theorem of H. Bohr on almost 
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periodic functions to the effect that the generalized Fourier series 
associated to an almost periodic function ƒ(x) converges in the mean 
tof(x). 

Next (chapter VIII) comes the study of bounded symmetric, 
normal, and unitary operators. First is a construction and uniqueness 
proof for the positive square root of a positive symmetric operator. 
The spectral resolution of an operator A is led to by the necessary 
discussion of projections and functions of operators. Suppose u(X) is a 
function on mS^SM where m and M are the bounds of A, ml SA 
SMI; if uÇK) may be approximated by a bounded increasing or de
creasing sequence of polynomials then the function u(A) may be de
fined. This process is closely analogous to that for extending the 
integral from the class Co of step functions to the class G—see the dis
cussion given earlier. Here we proceed from the class of polynomials to 
the class of lower or upper semi-continuous functions. This gives the 
functions E\ which occur in the resolution of the identity of A and 
lead to the formula A =J^0\dE\. A second proof of this formula 
consists in calculating | A | = \A42. The orthogonal manifolds occur
ring in the projection E0 are then obviously related to the range and 
null-manifold of A+ = 2~X(A + 1 A | ). Unitary and normal transforma
tions are subsequently discussed. There is a section devoted to the 
Fourier-Plancherel theorem and to Watson transforms. 

Now comes a chapter on unbounded transformations. There is first 
a discussion of the algebra of transformations relative to domains of 
definition; thus we find a collection of facts concerning Z1 + T2, 
TIT2, T1*; for example (TiT^Ç^T^Tjf. Clearly this type of ground 
clearing is necessary but it leaves a strange taste in its wake. One feels 
that this material is being treated in a form which is not final; the 
definition of the permutability of T with a bounded B is a case in 
point: BTQTB. As soon as one turns to the graph of a closed trans
formation one feels much happier. The collection of results on this 
subject includes the striking theorem that for a closed transforma
tion T, the operators B^ÇI+T^T)-1 and C^Til+T^T)-1 are 
bounded and B is positive definite self-ad joint. Examples are given 
(differential operators) of transformations which are symmetric but 
not self-ad joint. The first demonstration here given of the integral 
representation of a self-adjoint transformation based on the above 
transformation B and C with T= JT* is that of Riesz and Lorch. The 
second is the original one of von Neumann and transforms the given 
problem to one on unitary transformations by means of the Cayley 
transform. The Cayley transform is studied in the case of symmetric 
non self-ad joint operators. This leads to the notion of the deficiency 
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index. There is given a proof due to Friedrichs of the theorem that a 
semi-bounded symmetric transformation with lower bound c, cI^S, 
may be extended to a self-ad joint transformation A such that cI^A. 
The more general methods of Krein are discussed in some detail. The 
problem here is: Let S be symmetric and semi-bounded cI^S; let 
ySc. To determine all self-ad joint A such that A^S and yl^A. 

Chapter IX begins with a thorough discussion of the calculus based 
on a self-adjoint transformation A. This calculus assigns a trans
formation u(A) to a function u(K) measurable with respect to 
(£x/, ƒ) = | | E X / | | 2 by means of the formula 

W)f,g) = f°u(k)d{E>f,g). 
*J —oo 

Each such function of A has the property that it permutes with every 
bounded symmetric transformation which permutes with A,—in 
symbols u(A)^yy-yA. The converse theorem essentially due to von 
Neumann is established: If J1 is a closed transformation for which 
T^^A, then UP is a function u(A) of A providing the Hubert space 
is separable. Another theorem of the same author is demonstrated: 
If {Xm} is a denumerable set of permutable self-adjoint transforma
tions there exists a self-ad joint A such that each Xm is a function of 
A : Xm = xm(A). From this point forward to the end, the character of 
the book changes somewhat. Whereas previously all proofs had been 
given in detail, from now on, the reader is referred to the literature 
for a complete discussion of some of the stated results. 

There is no discussion of spectral multiplicity. We greet its ab
sence like that of a very good friend who is quite demanding and 
hard to take. The chapter ends with a discussion of the perturbation 
of the spectrum of a self-adjoint operator. Proof is given of Rellich's 
theorem: If An—>A (strongly) then for the corresponding resolutions 
of the identity, En\—>E\ at every point of continuity of E\. This device, 
used in a particular case, led to the first proof of the spectral resolu
tion of A given by Hubert. For analytic perturbations of A, the 
following theorem of Rellich and Nagy is proved : Let A (e) = A 
+eAa) +e2A(2) + • • • be a continuous family of self-adjoint oper
ators. Suppose (/*i, /x2) is a real interval having only one point X(0) 

in the spectrum of A =^4(0), and that of finite multiplicity m. Then 
for e sufficiently small there are 2m series 

\ r\ \(0) _i_ \ ( 1 ) _i_ \ ( 2 ) _L 

A ( \ A ( 0 ) _L ^ ( 1 ) _1_ V 2 ) _L (* = 1, ' « • , f») 
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representing respectively characteristic values and orthogonal char
acteristic functions of the operator -4(e). That is, the characteristic 
values and vectors are analytic functions of e. The applications of 
this theorem to situations in physics are obvious. 

The penultimate chapter is devoted to groups and semi-groups 
of transformations. First comes an elegant proof (due to Nagy) of 
the theorem of Stone on strongly continuous one-parameter groups 
of unitary transformations Ut in Hubert space—the theorem asserting 
that Ut = exp (iAt) where A is self-adjoint. A second demonstration 
based on Bochner's representation of functions of positive type by 
Stieltjes integrals follows. An immediate application is the mean 
ergodic theorem of von Neumann. Up to this point, the preceding 
third of the book has been devoted exclusively to operators in Hubert 
space and indeed to normal (including the self-ad joint and unitary) 
ones: Now the authors branch out to the study of operators over 
Banach spaces. There are proofs of two theorems of Hille. One asserts 
the existence on a dense manifold of the infinitesimal generator A of a 
strongly continuous group Ta of bounded transformations: A 
= linu->o Ah where Ah~h~1{Tn — I)^ Although an exponential repre
sentation of Tt is impossible (see unitary case above), the second 
theorem asserts: Ttf—\\mh-»ç> exp (tAh)f. An intriguing application of 
this yields the Weierstrass approximation theorem for continuous 
functions. We turn to ergodic theorems for which the additive semi
group is the set of positive integers. For unitary transformations the 
elegant proof of Riesz is set forth. The extension of this by Lorch to 
bounded semi-groups in reflexive spaces: | | [ / f c | | ^C, k = l, 2, • • • , 
follows. We mention lastly a type of argument originating with G. 
Birkhoff and applied by F. Riesz to uniformly convex spaces. 

The principal section of the last chapter (XI) is devoted to the de
velopment of spectral analysis in general Banach spaces by an ex
tension of the Cauchy calculus of residues. Briefly, the extension 
is carried out as follows: If T is an arbitrary bounded linear trans
formation, the points z in the complex plane for which Rz = (T — zI)~l 

exists constitute an open set—the resolvent set. The complementary 
set, the spectrum <r(T) of T, is closed and bounded. Suppose C is 
simple closed rectifiable curve lying in the resolvent set, then 
fcRzdz has a meaning in the uniform topology. Furthermore, since 
Rz is an "analytic function" of z—in accordance with a classical equa
tion: Rz = Rç + (z-Ç)R* + (z-Ç)2R$ + • • • —the above integral is un
changed if the curve C is altered slightly. Thus the value of the inte
gral depends only on the portion of the spectrum of T which lies 
interior to C. It is clear that one may also consider an integral 
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fcz
nRzdz and that this is equal to TnfcRzdz~fcTnRzdz since 

(Tn — znI)Rz is a polynomial in T and z whose integral around C is 
zero. Consideration of these integrals reveals a remarkable collection 
of facts concerning the structure of T. The existence of this method 
was recognized early by Riesz. The times seem to have been so un
prepared for it that in all he devoted to it only too brief pages (pp. 
117-119) in his book: Les systèmes d'équations linéaires à une infinité 
d'inconnues (1913). For various reasons, this material was soon for
gotten. In part, this was due to the fact just cited. In part, events 
conspired to focus all attention on the symmetric case in Hubert 
space for which the present theory was not then needed. It is probable 
that certain annoying misprints in Riesz' book adjoined to the sum
mary exposition which is there found contributed to the complete 
disappearance of this theory here presented in germ form. The fact 
is that in the next quarter century no mention of this material is to be 
found in the literature of its day. 

The interest of the present writer in extending reducibility phe
nomena from Hubert space first to reflexive spaces and subsequently 
to the most general Banach space led to his rediscovering Riesz' 
earlier work in the form which is presented in the present book. The 
essential facts are these. For a simple curve C lying in the resolvent 
set of T, the transformation P = — (liri^JcRzdz is a projection, 
P2 = P, which reduces T, PT=TP. Thus the manifolds M and S$l 
determined by P reduce T. The spectrum of T in 9ft (where P(W) 
= SOt) consists of that part of the spectrum of T lying interior to C. 
P = 0 if and only if the interior of C contains no points of the spectrum. 
P — I if and only if the entire spectrum of T lies interior to C. 

An important and interesting relation exists between the norm 
|| T\\ of Tand the spectrum T. Let \z\ ^rT be the smallest disc which 
contains the spectrum cr(T) of T. The number rT is called the spectral 
radius of T. Then it is easy to see that | | r | | è ^ r . Since, as follows 
from an elementary calculation, <x(Tn)= [cr(r)]n, | | r n | | ^rn

T. Now, in 
fact, the following theorem holds: l ining | | r n j | 1 / w = r r . This theorem 
was first stated in the present general form by Gelfand in his paper 
on normed rings (1941). A special case concerned with ring of ab
solutely convergent trigonometric series had been elaborated by 
Beurling three years earlier. 

This so-called spectral radius theorem is a simple consequence of a 
fundamental identity which appears in the work of this reviewer that 
deals with the calculus of residues and has already been mentioned 
above. I t is there proved that if T is a linear transformation having 
no singularities on the unit circle C: \z\ = 1 , then for the projection P 
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given by the contour integral P = — (liri^JcRzdz, we have (in the 
uniform topology) 

p = lim (/ - Tn)-\ 
n-*«> 

The facts wThich concern us here may be set down in the form of a 

THEOREM. The following hypotheses concerning T are equivalent: 
(a) The spectrum of Tlies interior to the circle \z\ = 1, that is rr<l. 
(b) Tn—>0 (uniformly), 
(c) The limn*,» \\Tn\\1/n exists, equals rTi and is less than 1. 

PROOF. Assume (a). If rT<l, then P = I (see a remark made three 
paragraphs above). Thus J = limn^00 (ƒ— UP™)"1; hence 

7 = lim (I-Tn) or lim Tn = 0. 
n—>oo »—>oo 

This gives (b). 
Assume (b). If Tw->0, then | |rw | | ->0 and thus lim sup H r ^ l ^ g l . 

Now, clearly, the spectral radius r^T is 1 and for €>0, that of 
S~ (rr+€)"_ 1Pis less than 1. Thus applying the results just obtained 
for T to the transformation $, we have lim sup | | 5 n | | 1 / n ^ l . This im
plies since e is arbitrary that lim sup || Tn\\1/n^rT- Since, as mentioned 
earlier, | | r n | | 1 / w ^ r r , we have lim inf | | r n | | 1 / w è^r . Combining these 
two results yields lim | | rn | |1 / n = r r . This is (c). 

Now assume (c). We have immediately, ||rn||—>0. Since for the 
spectra of P a n d Tn, [(7(r)]w==(r(rw), it follows that [<r(T)]n->0. Hence 
the spectrum of T lies in the interior of the circle \z\ = 1 . This is (a). 
This completes the proof of our theorem. 

We return to an examination of the present book. The work of 
Beurling on absolutely convergent series is developed in accordance 
with his methods. As a corollary one obtains the theorem of Wiener: 
If a periodic function ƒ (x) has an absolutely convergent Fourier series 
and does not vanish, then l/f(x) has the same property. There is a 
section devoted to an operational calculus following the ideas of 
Riesz, Gelfand, and Dunford. If u(z) is holomorphic on a domain which 
contains the spectrum of T, and is bounded by a curve C, then the 
integral (2Tri)~1fcu(z)Rzdz defines the function u(T). 

The book terminates with a discussion of the latest work of von 
Neumann on spectral sets. This theory applies to bounded trans
formations in Hubert space. The principal theorem follows: Let d 
be the disc \z\ ^ 1. Suppose u(z) is holomorphic in C\ and such that 
\u(z)\ g l in &. Then for any Twi th | | r | | g l , | | « ( r ) | | ^ 1 . A spectral 
set Z of a transformation T is now defined to be a closed set of the 
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extended complex plane such that for all rational functions u(z) 
satisfying | w ( 0 ) | ^ l on Z, the transformation u(T) exists and 
| |w(r) | | ^ 1. I t is proved that unitary and symmetric transformations 
are characterized by the fact that they have respectively the unit 
circle and the real axis as spectral sets. 

E. R. LORCH 

Über die Klassezahl abelscher Zahlkörper. By Helmut Hasse. Berlin, 
Akademie, 1952. j 

This is a highly technical book, whose object is the derivation of 
a formula for the class-number ft of an arbitrary absolute abelian 
field K and the study of this formula. Such a formula had been 
proved by Kummer for cyclotomic fields (i.e. fields generated by a 
root of unity) and in the general case by several authors (Fuchs, 
Beeger, Gut). The source of these formulae is of course the fact that 
the class number appears in the expression of the residue at s = 1 of 
the zeta function ÇK(S) of K. Using the product decomposition of 
ÇK into L-series, one is reduced to the computation of the values 
L ( l ; x) a t 1 of the L-series corresponding to those characters x ^ l 
which are associated to K by class field theory. The numbers L( l ; x) 
appear as infinite series; the main problem is to express them in 
closed form, which is done by making use of Gaussian sums. 

The resulting formula appears in the form ft = ft0ft*, where fto is the 
class-number of the maximal real subfield K0 of K, while ft*, the 
"second factor" of ft, turns out to be an integer > 0 . The fact that 
these two factors ft0 and ft* are actually integers is not obvious from 
the expressions for these numbers which appear in the formula itself. 
One of the aims of the author is to transform these expressions in 
such a way as to render their arithmetic nature more apparent. This 
in itself would not appear so very fascinating a task : when we express 
the number of zeros of an analytic function in a region by a contour 
integral, we do not take pains to establish independently that the 
value of this integral is an integer. However, in the process of so doing, 
new properties of ft0 and ft* appear which lead to a certain number 
of new results on class numbers of fields. 

The second chapter of the book is concerned with the transforma
tion of the expression for ft0. Here the striving to obtain for ft0 an 
expression which exhibits it as an integer is not entirely successful. 
Two different lines of attack are followed which yield results for two 
different kinds of fields K. The end results of the two methods are in 
the following form : the product of ft by some integer c is expressed as 
the index in the group of all units of a certain sub-group generated by 


