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curve theorem, which to the author's knowledge is never needed in 
function theory." 

What is the place which Thron's book will occupy in the literature? 
Certainly it contains much valuable material, well organized and in 
convenient form for coordinated study. For this reason it belongs (a) 
in the library of every college which makes an attempt to teach mathe
matics, and (b) in the personal library of every specialist in function 
theory. However, just because it is so carefully written, with so much 
attention devoted to foundations, it should never (in the reviewer's 
opinion) be used as text either in a beginning or advanced course in 
function theory. The author is to be congratulated for his courage in 
writing such a book and his success in finding a publisher, and the 
publisher in turn has performed a real service for mathematics. 

A. W. GOODMAN 

Isoperimetric inequalities in mathematical physics. By G. Pólya and 
G. Szegö. (Annals of Mathematics Studies, no. 27.) Princeton Uni
versity Press, 1951. 16+279 pp. $3.00. 

The title of this book, as remarked by the authors in the preface 
(where the authors have admirably delineated the aims of the present 
work), suggests its connection with a classical subject of mathe
matical research, the "isoperimetric problem." This problem consists 
in seeking among all closed plane curves, without double points and 
having a given perimeter, the curve enclosing the largest area. The 
"isoperimetric theorem" gives the solution to the problem: of all 
curves with a given perimeter, the circle encloses the maximum area. 
If the perimeter of a curve is known, but the exact value of its en
closed area is not, the isoperimetric theorem yields a modicum of in
formation about the area, an upper bound, an "isoperimetric in
equality"; the area is not larger than the area of the circle with the 
given perimeter. There are, besides perimeter and area, many im
portant geometrical and physical quantities (set functions, func
t ional ) which depend upon the size and shape of a curve. There are 
many inequalities, similar to the isoperimetric inequality, which re
late these quantities to each other. By extension, all these inequalities 
can be called "isoperimetric inequalities." Besides, there are anal
ogous inequalities dealing with solids, pairs of curves (condenser, 
hollow beam), pairs of surfaces, and so forth. The present book is 
concerned with inequalities of this type. 

An example of such an isoperimetric inequality, with which the 
subject matter of the book may be said to have begun, is the con
jecture of B. de Saint-Venant (1856) concerning the torsion of elastic 
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prisms: of all simply connected cross-sections with a given area, the 
circle has the maximum torsional rigidity. Inequalities of this sort 
are of practical value. Consider the inequality: of all triangular mem
branes with a given area the equilateral triangle has the lowest prin
cipal frequency. This furnishes a lower bound for the principal fre
quency of an arbitrary triangle in terms of its area. In doing this, a 
not readily accessible physical quantity (the principal frequency) is 
estimated in terms of easily accessible geometrical data (area, tri
angular shape). This illustrates the general trend of the present book: 
to estimate physical quantities on the basis of geometrical data, less 
accessible quantities in terms of more accessible ones. 

This book is intended as a fairly complete account of investigations 
carried out by the authors for a number of years, and to which 
many scientists have contributed their efforts. The authors have suc
ceeded in their task of achieving a unified, concise, easily readable 
presentation of the diversified material. In the course of the present 
review, references will be given only to papers not quoted in the 
book. Most of these have appeared since the publication of the book, 
which is a sign of the current interest in the subject matter under dis
cussion. 

A brief preface, which sets the stage for the rest of the book and 
presents concisely the authors* aims and point of view, has been 
summarized above. Chapter I, entitled "Definitions, methods and 
results," is a remarkably clear road map to the remainder of the book. 
As its title implies, this chapter fixes the notation to be employed 
throughout; it outlines the chief methods of attack employed: sym-
metrization, minimum principles, and expansion and variational 
methods; and it contains the precise statement of many of the results 
proved later. A great many results are compactly presented in the 
form of tables. The chapter ends with a brief survey of the following 
chapters. 

Chapters II , I I I , and IV are concerned with the subject of ca
pacity, and related topics. Chapter II is entitled "The principles of 
Dirichlet and Thomson." Let A be a closed surface, and u(p) be a 
function harmonic outside A, assuming the constant value u(p) =u0 

on A and having the expansion u(p) = Xor~1+Xir-2+X2r"~z • • • 
near infinity, where Xo, Xi, X2, • • • denote surface harmonics of 
degrees 0, 1, 2, • • • respectively. The ratio Xo/uo = C depends only 
on the "conductor" A and is called its capacity. Clearly, 

C = ( (—-da - f f f J grad u \2dr, 
4TTUOJ J dne 4:7rulJ J J 
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where the surface integral is taken over an arbitrary surface enclosing 
A (possibly A itself), da and dr are the surface and volume elements, 
respectively, and ne is the outer normal. The principal purpose of the 
chapter is to find upper and lower bounds for C in terms of certain 
geometrical quantities associated with A. Upper bounds for C can 
be found by means of the principle of Dirichlet, which is formulated 
by the authors as follows: If f(p) is an arbitrary scalar function de
fined on and outside A, with ƒ = u0 on A a n d / = 0 at infinity, then 

C ^ (47r)-%o2 f f f I grad ƒ |2Jr (Dirichlet's principle). 

Lower bounds for C can be found by means of Thomson's principle, 
which is formulated by the authors as follows: If f(p) is an arbitrary 
sourceless vector function defined on and outside -4, that is, 

div f(p) = 0, outside A, 

and 

where Q is the total charge, then 

1/C g (4TT)-1Ö-2 fff \f\Hr (Thomson's principle). 

I t is clear that by choosing, in the above inequalities, particular 
functions f(p) and f(p) satisfying the required conditions, one ob
tains upper and lower bounds for the capacity C of A. Direct formal 
proofs for the above inequalities are given, and it is shown that a 
certain minimum principle due to Gauss follows as a special case of 
Thomson's principle. The reviewer, however, has a predilection for 
the following derivation (patterned after J. B. Diaz and A. Wein-
stein, Journal of Mathematics and Physics vol. 26 (1947) pp. 133— 
136) which is based directly on Schwarz's inequality and clarifies the 
interrelation between the various minimum principles. For simplicity 
in writing, take UQ = 1 ; then the problem of estimating C is that of 
finding upper and lower bounds for the Dirichlet integral 

ƒƒƒ grad^ | 2 J r ( = 4TTC) 

of the solution u of the Dirichlet problem: 

file:///f/Hr
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uxx + Uyy + uZz = 0, outside A, 

u = 1, on Ay 

lim u(p) = 0. 

Schwarz's inequality states that 

[ ƒƒƒ • .**,]'* (ƒƒƒ•••*•)(ƒƒƒ*•**)> 
the integrals being taken over the exterior of A. Let ƒ (£) be an arbi
trary scalar function defined on and outside Ay w i t h / = 1 on A and 
ƒ = 0 at infinity, and take § = grad ƒ, i|r = grad u in Schwarz's inequality. 
An application of Green's identity readily yields Dirichlet's principle 

ƒ ƒ ƒ | grad u \Hr = ƒ ƒ ƒ | grad ƒ \Ur. 

Now let f(p) be an arbitrary (nonzero) vector function defined on 
and outside Ay with div £(p) = 0, outside A, and take <j> = /, tj = grad 
w in Schwarz's inequality. An application of Green's identity 

I I I /-grad udr = I I I [div (uf) — ̂  d iv / ] J r ^ "~ I I ut-neAa 

readily yields an inequality equivalent to Thomson's principle 

(/ƒ ,.„.*,)' 

ƒƒƒ / \HT 
= 1 1 1 1 £ r a ( i w l2^T* 

If, in particular, ƒ=grad z>, where v is a nonconstant harmonic func
tion, the last inequality yields (for the special Dirichlet problem 
under consideration here) E. Trefftz's (Verhandlungen Congress für 
Technische Mechanik, Zurich, 1927, p. 131) lower bound for the 
Dirichlet integral of the solution of Dirichlet's problem : 

iff-*-)' 
\JJa». ) sJJJ|gradB | , , ,r. I I I I g r ad V\2ÓT 

If, in particular, the harmonic function v is given outside A by a 
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potential of a single layer distribution, with density jtt, over A, that is 

<P) = I I Ko) — d(rq 

(which serves to define v throughout space) then the last inequality 
(using the known jump condition for the normal derivative of a single 
layer potential) may be written 

WW 
4-7T I i Vfidc — I I I |gradz>| 2dr 

•/ •/ J J J interior of A 

g I I I | grad U\HT\ 

interior of A 

and, a fortiori, using Green's theorem to simplify the numerator, 

47r( I I iid<j\ / | | vpd<r â I I I |gradw|2dr, 

which is equivalent to the principle of Gauss referred to above. 
In order to make actual use of the inequality of Dirichlet's prin

ciple, suitable funct ions /^) must be chosen. The authors propose to 
choose first the level surfaces of ƒ (as indicated in chapter I there are 
intuitive reasons of various kinds for preferring certain families of 
level surfaces) and then to find the "best function" possessing the pre
scribed level surfaces. Let \[/(p) =v be the equation of the given level 
surfaces, call them A(*>), where 0 ^v < <*>, and A (0) =A. Any function 
f(p) having these prescribed level surfaces must be of the form f(p) 
=X(iK£)) where X(/) is defined on 0 ^ Z < <*>, and X(0)=«o, X(«>)=0. 
It is shown that if 

r W =^~f( |grad^|rfo- f 
47T J J A{v) 

which depends only on the given surfaces A (*>), then upon choosing 

one has 

1 
C g , 

/ • 00 ƒI 00 

[T{v)}~\ 
0 
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which is the best upper bound for C obtainable from Dirichlet's 
principle once the level surf aces A (v) are prescribed. In order to make 
actual use of the inequality of Thomson's principle, vector functions 
f(p) must be chosen. Again, there are intuitive reasons for choosing a 
certain set of lines of force first. These lines do not determine f(p) 
completely, but only its direction at each point p. The authors de
termine the best lower bound for C obtainable from Thomson's 
principle once the lines of force are prescribed in a certain way. A 
method of approximation given for the capacity is based on the 
theorem (when A is analytic, or, if not analytic, is star shaped with 
respect to an interior point po) that 1/C is the greatest lower bound of 
the quantities 

f f Vo — d<r =* — f f f I grad Vo \2dr 
4TJJA dft e 47T J J J exterior of A 

(compare with Trefftz's lower bound for C given above) where Vo is 
an arbitrary harmonic function of the special type 

Vo - r-1 + H1(x1 y, z)r~* + H2(x, y, z)r* + • • • + Hn(x, y, z)r~^~\ 

with r the distance from a fixed point po in the interior of A, and 
Hn(x, y y z) the most general homogeneous polynomial of degree n in 
x, y, z satisfying Laplace's equation. The principles formulated above 
are shown to apply to other charge distributions in which one has to 
deal with a pair of surfaces (a "condenser"). The analogous problems 
in two dimensions are also treated. 

Chapter III bears the title: "Applications of the principles of 
Dirichlet and Thomson to estimation of the capacity." These prin
ciples are applied mainly in the form indicated in chapter II by 
choosing the level surfaces and the lines of force appropriately. 
Three classes of surfaces are considered: (1) convex surfaces, (2) 
surfaces which are star shaped with respect to a certain interior point 
po, and (3) surfaces of revolution. In (1) the exterior parallel surfaces 
and the normals to the given surface are chosen; in (2) the surfaces 
similar (with respect to po) to the given surface and the rays issuing 
from po are chosen; while in (3) the surfaces of revolution obtained 
by rotating the level curves of the exterior conformai mapping of the 
meridian curve of the given surface onto a circle, and the curves in 
this mapping which correspond to the radii of the circle, are em
ployed. As an example of the results obtained, consider the capacity 
C of a surface of revolution, representing the meridian curve in a 
complex w-plane and choosing the real axis as axis of symmetry. 
Let w =ƒ (2) be the mapping function of the exterior of this curve onto 
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the exterior of the circle |*| =f: 

W = ƒ(*) = 2 + Co + CxZ~l + • • • + CnZ~n + • • • . 

Then 

fT( f " W , e)]~ldX dOgCgff \ f u(r,6)dd\ dr\ , 

where 

rlmf(reid) = 2u{r,6). 

The equality signs hold for spheroids and only for spheroids. The 
same chapter also contains a proof of the Poincaré-Faber-Szegö 
inequality 

c*Ur) • 
where C is the capacity of a closed surface and V is the volume of the 
solid bounded by the surface. The proof depends upon a combina
tion of Dirichlet's principle and the process of symmetrization with 
respect to a point. As a particular, interesting special case of the in
equalities obtained in this chapter, the following inequalities for the 
capacity C of a cube with edge a are given : 

0.632a < C < 0.71055a. 

Chapter IV is entitled "Circular plate condenser." A circular plate 
condenser consists of two congruent circular disks A0 and Ai with a 
common axis. Let the common radius be denoted by a, and the dis
tance between the planes of the circular disks be c. Let Q>0 and 
suppose Q and —Q are the total charges of A o and Ai respectively. In 
the position of equilibrium the potential will be constant on the disk 
and equal to ± F0. The problem of estimating the capacity C 
= Q/2 VQ of the condenser for small values of the ratio c/a = q had 
been considered earlier by Kirchhoff and Ignatowsky. Using Gauss' 
principle, the authors obtain the following result: 

C 1 1 1 1 / 1 \ 
- > — + — log - + - ( l 0 g 8 - —) + €, 
a 4q 47T q 4CT\ 2/ 

where 6—>0 as q—>0. The principle of Gauss is applied by assuming 
uniform charges of equal magnitude and opposite signs over the 
disks A§ and A\. A generalization of this line of reasoning, assuming 
an arbitrary circular-symmetrical charge distribution, leads not only 
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to other lower bounds for C, but also, a t least theoretically, to an 
exact formula for C. As a special case of the estimation of the ca
pacity of a condenser consisting of two solids arising from each other 
by reflection in a plane, the chapter concludes with the following 
estimate for C for a circular plate condenser when c is large : 

<^-0+-)+°(i). 
7T \ TTC/ \q2/ 

Chapter V, entitled "Torsional rigidity and principal frequency, " 
is divided into three main parts. The first part contains variational 
definitions for the torsional rigidity and the principal frequency, and 
consequences of these definitions. Let D be a bounded simply con
nected plane domain, C be its boundary curve, P its torsional 
rigidity, and A its principal frequency. Usually, the torsional rigidity 
of D is defined by the equation 

P = 2 I I vdxdy 

where the function v (the stress function) is the solution of the follow
ing boundary value problem : 

Vxx + vyy + 2 = 0, in D; 

v = 0, on C. 

The variational definition for P used in this book is contained in the 
following inequality: 

ƒƒ/• + fy)dxdy 

P 

where ƒ is a sufficiently smooth, not identically zero, real-valued func
tion defined on D + C, satisfying the boundary condition ƒ = 0 on C. 
The equality sign holds if and only if f=cvt for some real number 
CT^O, where v is the stress function. (It may be remarked at this 
point that the reviewer has indicated, in the Proceedings of the 
Symposium on Spectral Theory and Differential Problems, Okla
homa A. and M. 1951, pp. 279-289, another variational definition 
for P , which is contained in the inequality 

*ƒ./>'• + gv)dxdy 
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where g is a sufficiently smooth function defined o n D + C, satisfying 
the partial differential equationgxx+gvv = —2 inJ9. Here the "arbitrary" 
function g satisfies the same partial differential equation as the stress 
function v, and furnishes an upper bound for P , whereas in the 
authors' principle, the arbitrary function ƒ satisfies the same boundary 
condition as the stress function v and yields a lower bound for P . 
This principle, which is related to Trefftz's lower bound (mentioned 
before) for the Dirichlet integral of the solution of Dirichlet's prob
lem in terms of an arbitrary harmonic function, has been extended to 
the case of multiply connected domains and applied to the estima
tion of the torsional rigidity by H. F. Weinberger, Journal of Mathe
matics and Physics vol. 32 (1953) pp. 54-63.) The variational defini
tion for A used in this book is contained in the inequality 

ff(fl + fl)dxdy 

I I fdxdy 

where the arbitrary function ƒ is as indicated above. The equality 
sign holds if and only if f=cwf for some real number Cj^O, where w 
is the solution of the following boundary value problem: 

Wxx + wyy + A2w = 0, w > 0, in D, 

w = 0, on C. 

The variational definitions, together with Schwarz's inequality, are 
shown to yield the following interesting inequality connecting P , A 
and the area A of D : 

PA2 > 44. 

Assuming that C is star shaped, the method of choosing ƒ having 
level lines which are similar to C is employed to obtain upper bounds 
for 1/P and A2, in terms of an arbitrary function, which serves the 
purpose of assigning the values of ƒ on the already prescribed level 
lines. Ingenious choices of this last arbitrary function lead to many 
interesting inequalities. The theory of conformai mapping is also 
employed to obtain further inequalities for P and A, for example 
P^(x/2) f 4 , where f is the maximum inner radius of Z>, the equality 
sign holding only when D is a circle. A more general treatment of 
the problem of finding lower bounds for P is also given, when a set 
of curves is prescribed as the level curves of the arbitrary function ƒ 
appearing in the variational definition of P . Let Cp, where O ^ p ^ l , 
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denote an arbitrary set of curves, "filling up the domain D," in such a 
way that C0 is an interior point (or a finite set of interior points) of 
the domain D, C\ is the boundary C of Z>, and Cp, for 0 < p < l , is a 
simple closed curve (or a finite set of mutually exclusive simple closed 
curves) such that Cp lies in the interior of Cp> if p <p ' . Then 

Pâ 4 f VooMxfo)]-1^ 
J o 

where A (p) is the total area bounded by Cp and 

J Cp 

The second part of chapter V contains the "inclusion lemma" and its 
application to deduce Saint Venante approximate formula for tor
sional rigidity. The term "inclusion lemma" is used by the authors to 
refer to four lemmas whose content can be intuitively expressed, in 
the authors' words, as saying that "an arbitrary convex curve is only 
boundedly different from a suitable rectangle or a suitable ellipse." 
The application consists in showing that PL4~4 (where I is the 
polar moment of inertia of D with respect to its centroid) is contained 
between positive bounds for an arbitrary closed, bounded, convex 
domain D. The third part of chapter V contains applications of con-
formal mapping. Consider the conformai mapping 

z = a0 + a£ + a£2 + • • • + anÇ
n + • • • , z = x + iy, 

which maps D onto the interior of the circle |f | < 1 . If v(x, y) is the 
stress function, then the function $ : 

$(#, y) = v(xt y) + %(x2 + y2) 

is harmonic in D and is the real part of an analytic function (de
termined up to a purely imaginary constant) 

F = $ + iy 

of the complex variable z — x+iy, which is regular in D. Since z — z(Ç) 
is analytic, one has 

F(z(Ç)) = uo + «if + w2f
2 + • • • + unr + • - -

and the problem of determining <£ (or v) is thus equivalent to de
termining the sequence of coefficients u0t «i, u^ • • • . Expansions 
for the polar moment of inertia are given in terms of the coefficients 
an of the mapping function js = s(f) and a proof of Saint Venant's 
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theorem (of all simply connected sections with a given area, the 
circular cross section has the maximum torsional rigidity) is given. 
This theorem can be expressed by the inequality 

2TTP S A\ 

where A is, as usual, the area of the cross section. These considera
tions are based initially on the assumption that the series 

| ax | + 2 | a21 + • • • + n \ an \ + • • • 

converges, but this assumption is later relaxed to that of the con
vergence of 

| < * i | 2 + 2 | a 2 | 2 + . . . + w | o n | » + . . . . 

(In connection with the relationship between / , the polar moment of 
inertia of D with respect to its centroid, and the torsional rigidity 
P , the reviewer would like to recall at this point the simple inequality 

which was emphasized by the reviewer and A. Weinstein as an ap
plication of the formula, valid for simply or multiply connected D1 

P = I - ƒ ƒ (<£ + 4>\)dxdy. 

where <f> is the warping function in torsion.) 
Chapter VI is entitled "Nearly circular and nearly spherical do

mains. " The nature of the results contained here is perhaps best illus
trated by considering the first example of this kind of investigation, 
due to Lord Rayleigh. Let p(<j>) be a fixed real valued function, 
0 ^ 0 ^ 27T, ô be a real number (in a sufficiently small neighborhood of 
zero) and consider the Fourier series expansion 

00 

ôp(<£) = #o + 2 ]T} (an cos n<l> + bn sin n<t>). 
n=-l 

Rayleigh found that the principal frequency A =A(p, 8) of the "nearly 
circular membrane" (the equation of whose boundary in polar co
ordinates r, </> is r = l+ôp(<£)) is given by 

A n . i \ Jn(j) / 

as ô—»0, where j is the first positive root of the Bessel function Jo(tf), 
j = 2.4048 • • • . Thus, Rayleigh expanded the variation dp of the 
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circular boundary r = 1 in a Fourier series and expressed the first and 
second variations of the physical quantity A""1 (dependent on the 
nearly circular boundary) in terms of the Fourier coefficients. The 
authors apply this method systematically, extending it by analogy 
from the plane to space, passing from Fourier expansions to expan
sions in spherical harmonics. A table in chapter I presents a concise 
survey of many of the results developed in chapter VI. The first part 
of the table lists physical quantities Q associated with a nearly circu
lar curve C, i.e. expansions of the form 

00 

Q = 1 + Go+ Y, R(n)-(an + bl) 
n=»l 

(neglecting terms of higher than second order in 8) where the Fourier 
coefficients an and bn are as indicated above, and the R(n) depend on 
the physical quantity Q. The second part of the table lists expansions 
of the form 

Q = 1 + Xo + Z *(»)•— f f [Xn(e, 0)Na>, 

for a nearly spherical surface whose equation, in spherical coordinates 
r, 0, 0, is 

r = 1 + tp(o, 0), 

with p(0, <t>) a fixed real valued function defined on the unit sphere, S 
a real number in a sufficiently small neighborhood of zero, and 

MO, *) = Z Xn(fi, *) 

the expansion of dp in spherical surface harmonics Xn(6, <f>). 
Chapter VII is entitled "On symmetrization." In the authors' own 

words, "the apparently scattered remarks of the present chapter are, 
in fact, carefully grouped around the idea of symmetrization." At 
the outset, the idea of symmetrization is connected with two general 
concepts (similar order and equimeasurability) concerning two real-
valued functions of the n real variables Xi, • • • , xn. In terms of these 
two concepts, three kinds of symmetrization are defined in x, y, z 
space: with respect to a plane (Steiner), with respect to a straight 
line (Schwarz), and with respect to a point. Numerous results con
cerning the influence of symmetrization on many physical quantities 
follow. (L. E. Payne and A. Weinstein, Pacific Journal of Mathe
matics vol. 2 (1952) pp. 633-641, have recently obtained similar 
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results for a generalized symmetrization which includes Steiner's 
and Schwarz's as special cases.) To mention only a few of the chap
ter's results: Schwarz symmetrization diminishes the polar moment 
of inertia with respect to the centroid; Schwarz symmetrization 
diminishes the capacity; of all conducting plates with a given area, 
the circle has the minimum electrostatic capacity (a conjecture of 
Lord Rayleigh). Many of the results obtained appear to be entirely 
inacessible to methods other than symmetrization. For example: of 
all tetrahedra with a given volume, the regular tetrahedron has the 
minimum surface area, integral of mean curvature, and capacity. 

Chapter VIII is entitled "On ellipsoid and lens." The shape of an 
ellipsoid is characterized by its semi-axes a, b, c> with a^b^c^O. 
Let a, j3, 7 be the eccentricities of the three principal sections of the 
ellipsoid, i.e. 

1 - a2 = c2b~\ 1 - p2 = c2or2
% 1 - 72 = War\ 

which satisfy the relation 

1 — /32 = (1 — a2)(l - 72). 

Approximating the electrostatic capacity by various geometric quan
tities is one of the principal aims. Let C be an approximation 
to the capacity C of the ellipsoid. The relative error (C — C)/C> which 
is a function of a, &, c, may be expanded in a power series about 
(1, 1, 1), valid for small a, ]8, y (i.e. for almost spherical ellipsoids). 
Written as an expansion in powers of /3 and 7, this expansion is a sum 
of homogeneous polynomials of different degrees; the non-identically 
vanishing polynomial of lowest degree is called the initial term of the 
relative error of the approximation C'. A table in Chapter I lists eight 
different approximations to C and their corresponding initial terms. 
In chapter VIII it is shown that one of these approximations: 

{ll[a + b + c] + 4[(bcyt2 + M 1 / 2 + (a&)1/2]}/45, 

yields too large values for prolate spheroids and too small values for 
oblate spheroids; and the same holds for another approximation 

L47T \47T/ J / 

The authors illustrate very clearly in chapter I how the study of 
such particular examples as the ellipsoid and the lens could be useful 
in a continuation of the present study to lead eventually to a complete 
system of inequalities between the quantities C, V, 5, M, • • • . 

The book concludes with seven notes and tables for some set func-
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tions of plane domains. The tables list (among others) the length L, 
the area A, the polar moment of inertia with respect to the centroid J, 
the maximum inner radius r, the outer radius f, the torsional rigidity 
P , and the principal frequency A for a circle, ellipse, narrow ellipse, 
square, rectangle, narrow rectangle, semicircle, sector, narrow sector, 
equilateral triangle, and regular hexagon. The notes contain new ma
terial and survey the more important contributions to the subject 
obtained by the authors, sometimes in collaboration with others, up 
to the date of appearance of the book. (For a recent, related result 
see G. Pólya, Journal of Mathematics and Physics vol. 31 (1952) pp. 
55-57.) Their titles clearly indicate their connection with the various 
chapters described above. Note A, "Surface-area and Dirichlet's 
integral," deals with Steiner, Schwarz, and circular symmetrization 
and their effect on the volume, surface area, Dirichlet integral, and 
other quantities. Note B, "On continuous symmetrization," deals 
with the question of defining a transformation 7\, depending con
tinuously on a real parameter X, with O ^ X ^ l , such that To is the 
identity, T\ is Steiner symmetrization of a plane curve C, while 7\, 
for 0 < X < 1 , changes certain quantities associated with the curve C 
"in the same manner" as is done by Steiner symmetrization of C. 
Note C, "On spherical symmetrization," is concerned with the effect 
of this symmetrization, which is the three-dimensional analogue of 
the circular symmetrization of note A, on the capacity of a solid. Note 
D, "On a generalization of Dirichlet's integral," treats the generalized 
capacity defined by minimizing the integral 

I j { | grad u |2 + p(x, y)u2}dxdy, 

where p(x, y) is a given function defined on D and the admissible 
functions u assume given values on the boundary of D. The classical 
Dirichlet principle arises if p(x, y) s 0 . Note E, "Heat conduction on 
a surface," considers the Dirichlet integral 

ƒ ƒ |grad/hfo 

taken over a connected domain of an open or closed surface in three-
dimensional Euclidean space, ƒ being a function defined on the sur
face and the gradient being defined in the sense of the metric of the 
surface. Lower bounds for the conductance of a "ring shaped" domain 
D on the surface are found in terms of geometrical quantities con
nected with D. Note F, "On membranes and plates" deals with three 
quantities Ax, A3, A3, defined by the following variational problems: 
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I I | grad u \2d<T 

Ai = min ; u = 0 on C, 

ƒƒ 

ƒ ƒ «^ 
(V%)2d<r 

u2d<r 

du 
A2 = min ; u = — = 0 on C, 

ƒƒ 
dw 

A3 = min ; u = — = 0 on C, 

I I | grad u \2d<r 
dn 

where D is a bounded plane domain with a simple analytic boundary 
curve C. Ai and A2 are the principal frequencies of a membrane with 
fixed boundary and of a clamped plate, respectively. A3 occurs in the 
study of the buckling of plates. Lord Rayleigh formulated the follow
ing conjecture (first proved by G. Faber and E. Krahn) : of all mem
branes of a given area the circle has the gravest fundamental tone 
(lowest principal frequency). This note deals with the analogous 
problem for A2 and A3, under the hypothesis that the functions u for 
which the minima are attained never vanish in D. Note G, "Virtual 
mass and polarization," is dedicated to relating the quantities in the 
title to certain geometrical data of a solid. 

This review only gives an idea of the nature and the variety of the 
problems discussed by the eminent authors, whose scientific accom
plishments and lucid methods of presentation are well known to the 
mathematical public. In the brief time since its appearance this book 
has already become the standard reference text for workers in this 
field. 

J. B. DIAZ 


