
SOME NEW ALGEBRAIC METHODS IN TOPOLOGY 

W. S. MASSEY 

1. Introduction. The purpose of this address is solely expository. 
I t is intended to give the mathematician who is not an expert in alge­
braic topology a picture of some of the newer algebraic techniques 
and machinery which have recently become common in that subject. 
The expert is warned that this exposition contains no methods or re­
sults which have not already been published. 

We shall concentrate attention on the spectral sequence, a topic 
initiated by Leray. By its use, one can investigate the homology 
structure of a fibre space in terms of the base space and fibre. This 
method has been applied with considerable success to the study of 
the topological structure of Lie groups and homogeneous manifolds. 
Other important applications have been made in the subject of dif­
ferential geometry in the large. 

2. Graded groups. In algebraic topology, one associates with each 
topological space certain algebraic structures, such as groups, rings, 
vector spaces, modules, etc. In this address, we shall for the sake of 
simplicity restrict our attention mainly to certain abelian groups 
which are associated with topological spaces. Almost everything we 
shall say could be equally well applied to the case of vector spaces 
over a given field, or more generally, to modules over a given com­
mutative ring. And with a little additional effort, we could consider 
the various rings that are associated with a space. 

Usually it turns out that one associates with a topological space X 
not a single abelian group, but a whole sequence of abelian groups. 
The most important examples are the following: 

The w-dimensional homology group of X with coefficients in an 
arbitrary abelian group G, denoted by Hn(X, G) (n = 0, 1, 2, • • • ). 

The w-dimensional cohomology group of X with coefficients in an 
arbitrary abelian group G, denoted by i?n(X, G) (w = 0, 1, 2, • • • ). 

The w-dimensional homotopy group of X, denoted by irn(X) 
(» = 1, 2, 3, • • • )• These groups were introduced by Hurewicz in 
1935. Ti(X) is the ordinary fundamental group, which need not be 
abelian. However, for n>\) wn(X) is abelian. 

These groups are the very basis of algebraic topology. Many im-
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portant topological properties of a space X are reflected in certain 
algebraic properties of these groups. Many questions of a purely 
topological nature about spaces can be reduced to questions of a 
purely algebraic nature about the homology, cohomology, or homot­
opy groups of X. For these, and various other reasons, it is important 
to be able to determine as much as possible about their structure, 
and to determine any relations that may exist between the groups 
associated with different spaces under various conditions. 

When one has to consider sequences of abelian groups, as in the 
examples just mentioned, it is often more convenient to collect all 
the groups together into one bigger group, and then consider that 
one bigger group instead. One does this by forming the (weak) di­
rect sum of all the groups of the given sequence. The larger group 
which results from this process is now generally called a graded 
group ; it is the direct sum of a certain indexed sequence of subgroups. 
Thus as examples we have the graded groups 

00 00 

H(X, G) = £ B%(X, G), H*(X, G) = £ B'(X, G), 

associated with any pair consisting of a topological space X and an 
abelian group G.1 

3. Groups with a differential operator. One naturally asks at this 
point how the homology, cohomology, and homotopy groups of a 
space are defined. To go into this question in detail would take us too 
much time. However, there is a standard algebraic procedure by 
which the homology and cohomology groups of a space are derived 
from what are called a group of chains and a group of cochains re­
spectively. It is the purpose of this section to explain this procedure. 

Let A be an abelian group. An endomorphism, d: A-+A, of A is 
called a differential operator if d2 = 0, i.e., for any x£^4, d[d(x)]=0. 
A pair (A, d) consisting of an abelian group A and a differential 
operator d on A is called a differential group. Given a differential 
group (Ay d), we shall denote by Z(A) the kernel of d, and by 
<B(A) the image,2 d(A). The condition d2 = 0 implies that <B(A) CZ(-4), 
and hence one may form the factor group Z(A)/CB(A). This factor 
group will be denoted by 5C(^4), and called the derived group. 

1 I t is customary to extend the abave definitions by denning Hn(X, G) and 
Hn(X, G) for n negative to be the trivial group consisting of the zero element alone. 

2 In topological applications, %{A) is generally called the group of cycles or co-
cycles. Similarly,<B(A) is called the group of boundaries, or coboundaries, or bounding 
cycles. 
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For any topological space X and coefficient group G one may de­
fine in various ways two differential groups: the group of chains, 
(C(X, G), d), and the group of cochains, (C*(X, G), S). The differential 
operators d: C(X, G)->C(X, G) and 5: C*(X, G)-»C*(X, G) are called 
the boundary and coboundary operators respectively. Although one 
can define the groups of chains and cochains in many different ways, 
it is a fundamental theorem (or rather, set of theorems) of algebraic 
topology that the derived groups are always the same (up to an iso­
morphism) for "reasonably nice" spaces. These derived groups are 
by definition the homology and cohomology groups, H(X, G) and 
H*(X, G) respectively. 

The graded structure on H(X, G) and H*(X, G) came from the 
fact that C(X, G) and C*(X, G) have a naturally defined graded 
structure: 

C(X,G) = £C„tX-,G), 

^ (direct sum) 
C*(X,G) = X O ( X , G ) . 

n 

Here Cn(X, G) is called the group of w-dimensional chains, and 
Cn(X, G) is called the group of ^-dimensional cochains. With respect 
to these graded structures, the differential operators d and ô always 
turn out to be homogeneous of degrees —1 and + 1 respectively, i.e., 

d [CP(X) ] C C^ i (Z ) , 5 [C*(X) ] C CiH-i(X). 

From this it follows immediately that the subgroups of cycles and 
bounding cycles also split up into direct sums of sequences of sub­
groups. Therefore the factor group, cycles modulo bounding cycles, 
also has a graded structure. 

This process of forming the derived group, 3C(-4), from a given dif­
ferential group, (A, d), is very common in algebraic topology. More­
over, it is also becoming common in some other branches of mathe­
matics. 

4. Exact triangles of groups. Another frequently occurring alge­
braic notion in algebraic topology is that of an "exact triangle" of 
groups and homomorphisms. Suppose we have three abelian groups, 
A, B, and C, and homomorphisms/: A—+B, g: B—+C, h: C—+A. These 
groups and homomorphisms may be conveniently exhibited by a tri­
angular diagram, as follows: 

A >B 
\ S c 
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This triangle is said to be exact in case the image of each homo-
morphism is precisely the kernel of the following homomorphism, i.e., 

f(A) - r\0), g(B) - h~\0), h{C) = /- '(O). 

The notion of an exact triangle has the advantage that it consider­
ably shortens the statement of many results, making them seem 
more natural and easier to remember. 

A purely algebraic situation of frequent occurrence which gives 
rise to an exact triangle is the following (we shall need to make use 
of this example shortly). Let (A> d) be a differential group, and let 
B be a subgroup of A which is "stable" under d, i.e., d(B)QB. Then 
the restriction of d to the subgroup B defines a differential operator 
on B\ also, d maps cosets of A (modulo B) into cosets, and defines an 
endomorphism of the factor group A/B which is obviously a differ­
ential operator also. Hence we can form the derived groups, 3C(4), 
3C(J3), and 3Q,(A/B). The inclusion homomorphism of B into A in­
duces a homomorphism i: 3C(J3)--»3C(.4) of the derived groups in a 
natural way. Similarly, the natural homomorphism A—+A/B which 
assigns to each element xÇiA its coset, x+B, induces a homo­
morphism j : '3Z(A)-*3Ç,(A/B). Finally, by using the differential oper­
ator d, it is possible to define3 a homomorphism d'\ 3C(A/B)—>3C(B) 
in a natural way. These three homomorphisms, i, j , and d', fit to­
gether to form a triangle, 

3C(B) • 3C(4) 

W(A/B) 

which may be easily proved to be exact. 

5. Spectral sequences of differential groups. The algebraic ap­
paratus we have described so far has been more or less standard in 
this subject for many years now. We shall now take up an idea of 
much more recent vintage, which has been of central importance in 
much of the rapid progress that algebraic topology has made in the 
last five years. 

DEFINITION. An infinite sequence of differential groups, (An, dn), 
n = l, 2, 3, • • • , is called a spectral sequence4 in case each group in 

3 If uÇ$Z(A/B), then d'(u) is denned as follows: Choose a cycle z belonging to 
the homology class u. Then z is a coset, z—y+Bf where yÇzA. The fact that z is a 
cycle implies that d(y)ÇzB. Then d'(u) is defined to be the homology class of d(y). 
This definition can be shown to be independent of the choices of z and y. 

4 The notion of a spectral sequence is due mainly to J. Leray. For references to 
early work on the subject, see [2]. 
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the sequence is the derived group of its predecessor, i.e., 

Associated with any spectral sequence is a certain limit group. 
Roughly speaking, this limit group is defined as follows. Let Z(An) 
denote the kernel of dn, as before, and let 

Kn:Z(An) —>An+i 

be the natural homomorphism which is defined by assigning to each 
element of the subgroup Z(An) its coset modulo ^(An). Then Kn is 
a homomorphism of a subgroup of An onto An+i. Consider the se­
quence of groups An and homomorphisms /cn, » = 1, 2, • • • . This se­
quence of groups and homomorphisms almost satisfies the standard 
definition of a "direct sequence" of groups; it fails only because the 
homomorphisms Kn are not defined over all of An. By a slight modifi­
cation of the usual definition of the limit group of a direct sequence 
of groups, one defines the limit group5 of the sequence {Any /cw}. 

6. An example. We shall now illustrate by means of an example 
how some of the main results of algebraic topology can be best stated 
in terms of spectral sequences. 

One of the most important concepts of present day topology is 
that of a fibre space. Not only does this concept occur in many dif­
ferent situations in topology itself, but it also is of central importance 
in some other branches of mathematics. Fibre spaces arise everywhere 
in differential geometry in the consideration of tangent spaces and 
tensor spaces over differentiable manifolds; and it is a natural con­
cept in considering a coset space of a Lie group. The notion of a fibre 
space is a generalization of the familiar idea of the Cartesian product 
of two spaces. In fact, Pontrjagin has called them "skew products." 

Various different definitions are now current for the term "fibre 
space. " For our purposes it will suffice if we say that a fibre space is 
locally a product space. To be precise, a fibre space is a quadruple 
(Bf p , X, F), where B, X> and F are topological spaces, called respec­
tively the "total space," the "base space," and the "fibre," and p is a 
continuous map of B onto X, called the "projection." These four 
things are required to satisfy the following condition : For any point 
XÇLX there exists a neighborhood V of x and a homeomorphism <j> of 
VXF onto p~l(V) such that 

p[*(»> y)] = » 
6 For the benefit of the interested reader, we give the precise details in Ap­

pendix I. 
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for any points z>£ V and yÇzF. 
Given any two topological spaces X and F, one can always con­

struct the following trivial fibre space having X for base space and F 
for fibre: choose B to be the product XXF, and let p be the projec­
tion oi XXF onto X. The main interest attaches to those fibre 
spaces which are not product spaces "in the large." An example of a 
nontrivial fibre space is obtained by letting B be a Möbius strip, X 
be the circumference of a circle, and F a segment of the real line. The 
definition of the projection p : B—>X is left to the reader. Another 
example is obtained by taking B to be a covering space of X, and 
p : B-+X the usual projection of the covering space onto the base 
space. In this case the fibre is a discrete space. In any case, one can 
usually construct many different (i.e., non-isomorphic) fibre spaces 
with a given base space and fibre.6 

I t is an important problem for many different reasons to determine 
what relations exist between the homology (or cohomology) groups 
of the total space, base space, and fibre in a fibre space. Various partial 
results along this line were obtained as long ago as the 1930's. How­
ever, the first nearly complete answer to this problem was obtained 
by J. Leray7 about 1947. His final results for cohomology groups may 
be stated as follows. Let (B, p , X, F) be a fibre space, and G an 
abelian group. Then there exists a spectral sequence (En, dn), 
n = 2, 3, - - - , and a decreasing sequence of subgroups of H*(B, G), 

H*(B, G) = DQDD1DD2D • • • D D*> D • • • 

such that the following two facts are true: 
(a) The first term of the spectral sequence, E2, is naturally iso­

morphic8 to H*(X, H*(F, G)). 
(b) Let JEOO denote limit group of this spectral sequence. Then 

En is naturally isomorphic to the weak direct sum, ^2P Dp/Dp+1. 
At first sight, this result does not look as if it would be very helpful 

in deducing precise relations between the cohomology groups of J5, 
X, and F. However, it is much more useful than would at first appear 
due to the following additional facts: 

(c) As mentioned above, cohomology groups of topological spaces 
6 A closely related concept is that of a fibre bundle. A fibre bundle is a fibre space 

which has certain additional elements of structure attached to it. 
7 This result of Leray's was first announced in various notes in C. R. Acad. Sci. 

Paris, cf. the references given in [2] and [3]. 
8 To be strictly correct, £2 is isomorphic to the cohomology group of X with the 

local coefficient system H*(F, G). However the formulation of the text is correct in 
most cases in which spectral sequences are actually applied to fibre spaces (e.g., the 
case in which X is simply connected). 
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are graded groups. Therefore E2=H*(X, H*(F, G)) is "bi-graded," 
i.e., is the direct sum of the doubly indexed family of subgroups, 
H*(X, H*(F, G)). We shall denote H*(X, H«(F, G)) by E?. 

(d) In most cases that occur in practice, H*(X, H*(F, G)) can be 
expressed in terms of H*(X, G) and H*(F, G) by means of tensor 
products and other purely algebraic operations, provided G is chosen 
suitably. 

(e) The group £ 3 inherits a bi-graded structure from the bi-graded 
structure on E2. That is, E3 is the direct sum of a doubly indexed 
family of subgroups, El'Q, where El'Q is the image of a subgroup of 
EY under the homomorphism K2 described in §5 above. One now sees 
inductively that all the groups En are bi-graded, and the homo­
morphism Kn is compatible with the bi-graded structures on En and 
En+i (i.e., Kn maps E™ into -En+i)- This implies that the limit group, 
Eoo, is also bi-graded. 

(f) For any pair of integers p and q, there exists an integer N 
(depending on p and q) such that the groups E™ are isomorphic for 
all n>N. This implies that the component Ev* of E^ is determined 
in N steps. Naturally, this fact that any given component of E^ can 
be determined by a finite process is of essential importance. 

Practically all the known results about the cohomology groups of 
a fibre space can be derived from this fundamental theorem of Leray. 
And this is in spite of the fact that the spectral sequence says nothing 
about the various group extensions involved if one tries to determine 
H*(B, G) from E^. There is also the further difficulty that, in various 
applications, the problem of computing the successive Er's and dr's 
is not effectively solved. 

An analogous result about the homology groups of a fibre space is 
due to J. P. Serre [S]. 

7. Exact couples. The question naturally arises, how are spectral 
sequences of a fibre space defined? Here again it would take us too 
long to go into details, but there is a certain algebraic mechanism 
which gives rise to a spectral sequence which can be easily described. 
This algebraic mechanism seems to be applicable to many problems 
of topology. 

DEFINITION. An exact couple9 is an exact triangle in which two of 
the groups are the same; to be precise, an exact couple consists of 
two abelian groups, A and C, and three homomorphisms,/: A—>A, 
g: A—>C, and h: C-^A. These homomorphisms are required to satisfy 
the following "exactness" conditions: 

9 Exact couples were introduced by the author; cf. [4]. 
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f (A) - r K O ) , g(A) -* -* (0) , and h(C) - / ^ ( O ) . 

These three conditions can be easily kept in mind if one makes the 
following triangular diagram, 

A—+—>A 

*></* 

and observes that the kernel of each homomorphism is required to 
be the image of the preceding homomorphism. We shall denote such 
an exact couple by the notation ( 4 , C; ƒ, g, h), or more briefly (A, C). 

There is an important operation which assigns to an exact couple 
(-4, C; ƒ, g, h) another exact couple (A', C'\ ƒ', g', A'), called the 
derived exact couple. This derived exact couple is defined as follows. 

Define an endomorphism d: C—>C by d = goh. Then d2 = dod 
= g o A o g o A = 0, since h o g = 0 by exactness. Therefore d is a dif­
ferential operator on C. Let C = 3C(C), the derived group of the 
differential group (C, d). Let A'=f(A), which is a subgroup of A. 
Define ƒ' =ƒ | A'y the restriction of ƒ to the subgroup A'. The homo­
morphism h': C—^A' is induced by h; it is readily verified that 
A[Z(C)]C-4', and h[cB(C)] = {o}, hence h induces a homomorphism 
of the factor group C" = Z(C)/£(C) into A'. The definition of 
g': Af—*C is more complicated. Let aÇ,Af\ choose an element b&A 
such that f(b)=a. Then g(b)ÇzZ(C), and g'(a) is defined to be the 
coset of g(b) modulo 4B(C). It is easily verified that this definition is 
independent of the choice made of the element 6 £ . 4 , and that g' is 
actually a homomorphism. 

Of course, it is necessary to verify that the homomorphisms ƒ', g', 
and h' satisfy the exactness condition of an exact couple. This verifi­
cation is purely mechanical. 

I t is clear that this process of derivation can be applied to the 
derived exact couple (A', C';f', g', h') to obtain another exact couple 
(A", C"\f', g", h"), called the second derived exact couple, and so on. 
In general, we shall denote the nth. derived couple by (A(n\ C(n); 

f(n)f g(n)f h(n)^ a n ( j ^(n) «g(n) 0 £(n). £(»)_»£>) WJU denote the differ­
ential operator on C(n). Then the sequence of differential groups, 
(C (n), d (n)), is readily seen to be a spectral sequence. I t will be re-
erred to as the spectral sequence associated with the exact couple (A, C). 

We can now indicate how the spectral sequence of a fibre space is 
defined. Let (JB, p , X, F) be a fibre space as described above, and let 
C*(B) denote the group of cochains of B (we are omitting the coeffi­
cient group G from our notation). The fibre space structure on B de-
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fines in a rather natural way a nested sequence of subgroups10 of the 
group C*(B): 

C*(B) - A~lDA°DA1DA2D • • • D A* D • • - . 

Each of these subgroups is stable under the coboundary operator, 8 : 

8(4") CAP. 

Hence we can form the derived groups, and there is associated with 
each adjacent pair of groups in this sequence an exact triangle, as 
described above: 

ip 
3C(^+ 1) • 3C(4*) 

8P' \ i/jp 
W(A*/A*+l) 

Now define graded groups A and C as follows: 

A = E W(An), C « £ 5C(^V^W+1). 
n n 

Then the homomorphisms in, j w , and 8£ define homomorphisms 
i : A—±A,j\ A-+C, and 5': C—>-4 respectively, and the necessary exact­
ness conditions are fulfilled, so that (A, C; i,j, 8') is an exact couple. 
The spectral sequence associated with this exact couple is the desired 
spectral sequence of the fibre space (B, p , X, F). 

I t should be mentioned here that Leray originally obtained the 
spectral sequence of a fibre space directly from the nested sequence 
of subgroups, A°Z)A1Z) • • • , without the use of the intermediate 
notion of an exact couple. However, it is probably easier to keep in 
mind the definition of an exact couple and its derived exact couple 
than it is to remember Leray's method. In addition, the method of 
exact couples applies to some situations to which Leray's method does 
not apply (see the examples below). 

8. Some examples of other applications of spectral sequences and 
exact couples. For our first example, let X be a connected topological 
space, and let J? be a covering space of X. Let II denote the funda­
mental group of X, and n the subgroup of II to which X corresponds. 
We shall assume that X is a regular covering; this means that n is a 
normal subgroup of II. Also, this condition implies that the quotient 

10 For the benefit of the reader who has some familiarity with the concepts of 
singular cohomology theory, we indicate one way of defining this nested sequence of 
subgroups in Appendix II. 
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group n / n operates on J? as a group of homeomorphisms, none of 
which have any fixed points (with the exception of the identity ele­
ment, of course). One may consider that X is obtained from X by 
identifying points which correspond under the operations of n / n . 

I t is a problem of long standing in topology to determine what 
relations must exist between the homology (or cohomology) groups 
of X and X. Any such relations will clearly have also to involve 
something about the groups n and 5 ; for, it is known that given 
any subgroup n of n , one can construct a covering X of X which 
corresponds to the subgroup 5 . 

In 1948, H. Cartan11 proved the following result: There exists a 
spectral sequence (£ n , dn)y n = 2, 3, and a nested sequence of sub­
groups of H*(X), 

such that the following two facts are true: 
(a) The first term of the spectral sequence, E2, depends only on the 

factor group, n / n , the cohomology group Ü*(J?), and the manner in 
which n / n operates on i?*(J?). (Note: since n / n operates on Jf, it also 
operates on JEf*(J?).) To be precise, £ 2 is isomorphic to the cohomology 
group of the group I I / n with coefficients iüT*(J?), 

E2 = #*(n/n, ff*(z)). 
(b) Let JSoo denote the limit group of this spectral sequence. Then 

E,» is naturally isomorphic to the direct sum ^2P DP/DP+1. 
The remarks (c), (d), (e), and (f) that were made in §6 about the 

spectral sequence of a fibre bundle apply verbatim to this spectral 
sequence also. 

In the statement of this result, there occurs a concept which we 
have not mentioned before: the cohomology group of an arbitrary 
abstract group II (which need not be abelian) with coefficients in an 
abelian group G, denoted by i7*(II, G). This concept (which is purely 
algebraic) had its origin in some purely topological results of Hure-
wicz, but since then it was proven of use in algebraic number theory. 

I t should also be pointed out that although a covering space is a 
special case of a fibre space, this spectral sequence of H. Cartan is not 
the same as that obtained by applying the spectral sequence of 
Leray to the case of a covering space. The spectral sequence of Leray 
is of little interest in the case of a covering space. 

Our second example refers to the homotopy groups of a space. 
11 H. Cartan announced this result without proof in [ l ] ; he has not published a 

complete proof as yet, except in some mimeographed notes of limited circulation. 
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The homotopy groups of a space X, denoted by irp(X) (p^l), were 
mentioned in passing at the beginning of this address. They are 
topological invariants of X, as are the homology and cohomology 
groups of X. In some problems they give more complete information 
about a space, or give deeper insight into its topology. Unfortunately 
it is usually much more difficult to determine the homotopy groups 
of X than it is to determine the homology or cohomology groups. 
Any theorem which contributes to a better understanding of the 
structure of the homotopy groups of spaces is usually rather signifi­
cant. Spectral sequences come into this picture as follows: Given 
any topological space X, there exists a spectral sequence12 (En, dn)} 

n = 2y 3, • • • , such that the limit group E* bears the same relation 
to homotopy groups of X that the limit group of the spectral sequence 
of a fibre space bears to the cohomology groups of the total space 
(see §6). The first term, E2, is not completely known. It is a bi-
graded group, and some of its homogeneous components are ordinary 
homology groups of X. Much of our meager knowledge about the 
homotopy groups of a general space can be derived from the existence 
of this spectral sequence. Leray's method for defining spectral se­
quences does not apply to this example. 

I t should be mentioned that an analogous result holds for the 
Borsuk-Spanier cohomotopy groups of a finite-dimensional space X. 
There exists a spectral sequence,13 (En, dn) such that the limit group, 
Eoo, is closely related to the cohomotopy groups of X, and the initial 
term, E2, is closely related to the cohomology groups of X. 

Our final example is of a purely algebraic nature. As mentioned 
above, if II is an arbitrary group, then the cohomology group iff*(II, G) 
(with coefficients in the abelian group G) is defined. Suppose II ' is a 
normal subgroup of II. Then the question arises, What relations exist 
between the three cohomology groups, iJ*(II, G), Ü*(II', G), and 
Ü*(IÏ/II ' , G)? This question is answered by a theorem14 of Serre and 
Hochschild: There exists a spectral sequence (En, dn) such that E2 

= i7*(n/IT, i?*(II')), and the limit group E„ is related to 23* (H, G) 
in a way we have described before (cf. the discussion of the spectral 
sequence of a fibre bundle above). 

9. Conclusion. The main point of this paper may be stated as fob 
lows: The algebraic notion of a spectral sequence is essential for the 
statement of many basic theorems of algebraic topology. These 

12 This spectral sequence was introduced by the author in [4, part II] . 
13 This spectral sequence was introduced by the author in [4, part III] . 
14 This theorem is stated and proved in [ö]. 
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spectral sequences often arise as the associated spectral sequences of 
certain exact couples. 

10. Appendix I: The precise definition of the limit groups of a 
spectral sequence. Let (An, dn), n = 1, 2, • • • , be a spectral sequence, 
and let Kn: Z{An) —>An+i be as defined in §5. Define a homomorphism 
KI of a certain subgroup of An onto An+P by composition of the 
homomorphisms Kn, Kn+i, • • • , Kn+P~.i: 

p 
Kn = Kn+p-l O • • • O Kw+1 O Kn. 

Let An denote the subgroup of An consisting of those elements a^An 

such that /c£(a) is defined for all values of p. Define Rn: Zn~>Zn+i 
to be the restriction of Kn to the subgroup An. Then the sequence of 
groups {3n} and homomorphisms {kn} is a direct sequence of 
groups in the usual sense, and its limit group is defined to be the limit 
group of the given spectral sequence. 

11. Appendix II: The definition of the nested sequence of sub­
groups of the group of cochains of a fibre space. Let (B, p> X, F) be 
a fibre space, as defined in §6, such that the base space X and the 
fibre F are finite polyhedra. Choose a simplicial decomposition of 
X which is fine enough to satisfy the following condition: For any 
simplex aQX, there exists a homeomorphism </> of aXF onto p""1^) 
such that 

p[<K*> y)] = * 

for any points #£<r and y(EF. I t is readily seen that such simplicial 
decompositions must exist. Let Xn denote the ^-dimensional skeleton 
of X with respect to this simplicial decomposition (i.e., the union of 
all simplexes of dimension ^w) , and let Bn=p~~1(Xn) for n 
= 0, 1,2, • • • . 

Let C*(S, G) denote the group of singular cochains of B with 
coefficients in G. An element /GC*(J5, G) is a function which as­
signs to a singular simplex T in B an element ƒ (T) G G. Define An 

to be the subgroup of C*(B, G) consisting of those cochains which 
vanish on all singular simplexes contained in the subspace Bn of 5 . 
Then 

C*(B) DA»^AlDA*D---DA"D---

and 

d(An) CAn 

as required. For full details of this method, see [4, part V]. 
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This method does not apply in case X is not a polyhedron. The 
method to be used in the general case, using "cubical" singular co-
chains, has been described by J. P. Serre [5]. 
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